Journal of Global Optimization 10: 439-465, 1997. 439
© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Performance of Neural Net Heuristics for Maximum
Clique on Diverse Highly Compressible Graphs

ARUN K. JAGOTA*
Department of Computer Science, University of California, Santa Cruz, U.SA.

KENNETH W. REGAN**
Department of Computer Science, Sate University of New York at Buffalo, U.SA.

Abstract. The problem of finding the size of the largest clique in an undirected graph is NP-hard,
even to well-approximate, in the worst case. Simple algorithms, including some we study here, work
quite well however, on graphs sampled from u(n), the uniform distribution on n-vertex graphs. It is
felt by many, however, that u(n) does not accurately reflect the nature of instances that come up in
practice. It is argued that when the actual distribution of instancesis unknown, it is more appropriate
to suppose that instances come from the Solomonoff—-Levin or universal distribution m(x) instead,
which assigns higher weight to instances with shorter descriptions (i.e., to those that are structured
or compressible). We extend atheorem of Li and Vitanyi to show that the average-case performance
ratio of any approximation a gorithm on random instances drawn fromm(z) has the same asymptotic
order as its worst-case performance ratio. Because m(z) is neither computable nor samplable, we
employ aredlistic analogue q(x) which lends itself to efficient empirical testing. We experimentally
evaluate how well certain neural network algorithms for Maximum Clique perform on graphs drawn
from q(z), as compared to those drawn from u(n). The experimental results are as follows. All
nine agorithms we evaluated performed roughly equaly-well on u(n), where as three of them —
the simplest ones — performed markedly poorer than the other six on (). Our results suggest that
g(z), while postulated as amore realistic distribution to test the performance of agorithmsthan u(n),
also discriminates their performance better. Our q(x) sampler can be used to generate compressible
instances of any discrete problem.

Key words: Universal distribution, compressible data, heuristic algorithms.

1. Introduction

The MAX-CLIQUE problemisto computethesizew(G) of thelargest clique (i.e.,
complete subgraph) inagivengraph GG, and further tofind acliqueof that size. It has
long been known that w(G') is NP-hard to compute exactly, so interest has centered
on approximating w(G) closely enough to suit the many applications which can
be formulated in terms of MAX-CLIQUE. These include constraint-satisfaction,
object-recognition, and other real-world problems. Many approximation heuristics
have resulted from the study of neural networks for solving hard combinatorial
optimization problems (see [2; 17]) and are applicable to MAX-CLIQUE. For an
extensive survey on MAX-CLIQUE, its applications, and algorithms for it, see
[16].

* Thefirst author wasinvolved in this research at the Dept of Computer Science, SUNY-Buffalo
** Supported in part by NSF Grant CCR-9011248.

440 ARUN K. JAGOTA AND KENNETH W. REGAN

Recently it hasbeen shown that even calculatingw(G) to within agiven constant
factor is NP-hard [1]. In fact, the main result of [1] gives afixed e > 0 such that
if there is a polynomial-time algorithm A which gives w(G)/A(G) < n¢ for al
G of sufficient size n, then NP = P. (Here A(G) denotes the clique size returned
by algorithm A.) Nevertheless, there are simple heuristics which come to within a
factor of 2 of optimal for “most” graphs, in the sense of the uniform distribution
u(n). This distribution is defined on n-vertex undirected graphs, by letting each
edge (i,7), (1 <1 < j < n), exist independently at random with probability
1/2. When the probability is p instead of 1/2, we denote the distribution as u,(n)
instead. For example, Theorem 8 of R. Karp [11] implies that for any € > 0 and
sufficiently large n, the heuristic we call SD-{) gives an expected performanceratio
Ew(G)/SD — B(G) : up(n)] whichislessthan 2 + ¢.

However, it isfelt in many quarters that the uniform distribution does not accu-
rately reflect the nature of instances which come up in practice. M. Li and P.
Vitanyi [12] argue that when the actual distribution of instances is unknown, it is
most appropriate to supposethat they come from the non-computable Solomonoff—
Levin or universal distribution m(z). One reason is that every computable distri-
bution is majorized by a constant multiple of m(z). Another reason related to
Occam's Razor is that the objects occurring most often in nature or in practice
have short descriptions. A description of x isaprogram P and an argument y such
that P(y) = z; the description is short if the total bit length of Py is appreciably
less than the bit length |z| of z. The shorter descriptions = has, the more weight is
given to m(x). By contrast, uniform distributions favor instance strings = which
are incompressible; i.e. whose shortest descriptions are essentially “PRINT «”. Li
and Vitanyi [13] show that with respect to m(z), the average-case running time
of any algorithm whatsoever has the same order as its worst-case running time.
In Section 2 we obtain the same result with performance ratios by approximation
algorithmsin place of running time.

The main purpose of our work is to test whether certain algorithms perform
noticeably worse under distributionswei ghted toward compressibleinputs. Weal so
wish to ascertain which algorithms perform poorly on such distributions and which
performwell. Section 3 describesour efficient approximation () tom(z). Section
4 describes the algorithms we tested, ranging from simple to sophisticated neural
network heuristics. All these algorithms were tested extensively on random graphs
in[9], and several of them on avariety of graphswith different kinds of structures
in [10], in which paper extensive comparisons were made with other algorithms.
Section 5 describes the experimental methodology, which includes a description
of the test graphs, a discussion of the criterion for evaluating performance, and a
description of the parameter values of certain parametrized algorithms. In Section
6 we present the experimental results and their analysis.

The main contributions of this paper are:

— Theorem 1, extending Li and Vitanyi’s result to approximation performance
ratio.

PERFORMANCE OF NEURAL NET HEURISTICS 441

— A method for testing algorithms under an efficient approximation to the uni-
versal distribution. To our knowledge, this is the first concerted effort at
testing under such non-uniform distributions. The resulting generator, q(x),
providesareasonably efficient meansof generating adiverse set of application-
independent graphs, amongst which lie some quite hard graphs for MAX-
CLIQUE — harder, as experiments and conceptual arguments indicate, than
random graphs.

— Experimental results (Section 6) which show that, while all nine heuristics
performed roughly equally-well under u(n), three of the simpler ones per-
formed markedly poorer than the other six under q(z). For example, SD-0), the
simplest heuristic, retrieved on average a clique size within afactor of 1.35 of
the one retrieved by the best heuristic, on graphs drawn fromu(n) (see Table
4). By contrast, SD-() was on average poorer by afactor of 2.42 and 7.56 than
the best heuristic on graphs drawn from ¢(100) and q(400) respectively (see
Table 4).

— Experimental results (Section 6) which reveal someinteresting characteristics
of certainindividual algorithms. For example, asimple variant of SD-(}, only a
very little more sophisticated than SD-(, ended up performing much better on
g(z). One of the continuous neural network methods, MFA, which has been
claimed in the neural network literature to work well in practice, did indeed
work very well on q(z). The other continuous method, CHD, was discernibly
poorer than MFA but significantly better than SD-() and the other two simplest
algorithms, on q(z).

2. Theoretical Work

Consider any maximization problem 7, on a graph, which employs a quality mea-
sureq : G, — Z*. For any algorithm A for problem , define

_ Topt (7)
wen (A, m) = max = o

wherem = (%), z € {0, 1} isthe usual bitstring representation of agraphin g,
Topt(x) is the quality of the optimum solution in z and A(z) is the quality of the
solution in z found by algorithm A.

Clearly we, (A, m) isrecursive.

Define the average-case performance ratio of algorithm A with respect to the
m(zx) distribution on inputs of length m as

2 i(a)=m M(@)Topt (z) [A(2)
El(m):m m(:L‘)

acM(A,m) =

where [(z) denotes the length of z.
Let M denotetheset {(3), (3),...}.

442 ARUN K. JAGOTA AND KENNETH W. REGAN

THEOREM 1. For any algorithm A for any problem = as defined above, and for
anym € M,

acl(A,m) = O(wey (A, m))

Proof. Following [13], define a probability distribution P(x) that assigns high
probability to some inputs for which the worst-case complexity is reached, and
zero probability in other cases. Specifically,

0 if l(z) ¢ M
P(z) = Yi(z)=m M(z) ifl(z) € M and z isthe lexicographically
= first graph in G,, With mey () /A(z) = wex (A, m)
0 if {(z) € M and z is not as described above

Thedistribution P isdefinedon S = Z* U {u} wherew isasymbol notin Z*
used to cover the remaining probability uncovered by Z1 [13]. We set

P(u) := m(u) + Z m(z)

z:l(z)gM
which makes
Z P(z) = Z m(z) = 1.
€S zeS

Thedistribution P(z) isenumerablesincem(z) is enumerable and becausethe
above construction preserves this property.

Thereforethereisaconstantcp > Osuchthatforal z € S : cp xm(z) > P(z)
[13]. Hence
2i(x)=m M(Z)Topt(2) [A()

Zl(:c):m m(J?)

i Zl(m):m P((L‘)?Topt(flf)/A((L‘)
cp Zl(m):m m(iE)
i Zl(w):m m($)ch(A7 m)
cp Zl(m):m m(z)
wer (A, m)

acy(A,m) =

Y

cp

The proof is completed because, trivially,
wer (A,m) > acl (A, m).

Theorem 1, whilearigorousresult, hastwo limitations asfar asthe experimental
part of this paper is concerned. First, the proof hinges on the distribution m(z),

PERFORMANCE OF NEURAL NET HEURISTICS 443

which is not computable, in particular, as Li and Vitanyi explain, on the unique
dominance property of m(x). Second, the constant ¢ p usedinthe proof isquitelarge
[13], which in turn implies that the proof holds only for large problem instances.

This raises the question: while the current proof of Theorem 1 does not go
through when the hypotheses are changed as noted above, does the effect captured
by Theorem 1 still persist? Oneway to addressthis questionisviaexperimentation.
Thisisthe approach taken in the remainder of this paper. Here, we present Li and
Vitanyi’s intuitive explanation of the effect that gives rise to Theorem 1 [13],
adapting it to performanceratio.

Let algorithm A have average-case and worst-case performance ratios of
©(f(n)) and ©(g(n)) respectively, where f(n) = o(g(n)). Thisimplies that
only on a sparse subset of inputs of length n does A achieve its worst-case
performance ratio of ©(g(n)). Owing to its sparseness, given n, every such
input is compressible.

This conclusion, that “all worst-case inputs are compressible” coupled with the
fact that the set of compressibleinputsis, like the set of worst-caseinputs, a sparse
subset of the set of all inputs of length » offers hopethat if one sampl es sufficiently-
many compressible inputs (whichis not alot), one will find some worst-case ones.
It is this hope that drives the experimentation in the remainder of this paper.

3. Theq(z) Sampler

We use afunctional programming notation £ dueto Y. Gurevich and S. Shelah [5]
which captures all programswhich runin nearly linear time, viz. time bounded by
¢ - n(logn)* for somefixed ¢, k& > 0. We wrote in the C programming language
a program D which decodes any binary string z into an £-program P and an
argument y. Details of £ and D are given below. We also wrote in C a program
U which takes P, y, and the target graph size n as arguments, and simulates P on
input y. If z := P(y) does not have length n or greater, the output is discarded.
ElsewedefineU(z,n) = U(P,y,n) to bethe graph G, constructed by taking the
first n bits of z.

With reference to our specific decoder D and simulator U, we define, for al n
andz € {0, 1}™:

wq(x) = Z 27l |Z| < |£E| +1,U(z, |£E|) =7,
Wy(n) = Z wq(z) 1z € {0,1}",
q(z) = wg(x)/Wq(n). @

The distribution g is computable and samplable by generating strings z of length
< n + 1 uniformly at random. Except in relatively rare cases, the sampling and
decoding of each z takes nearly linear time as afunction of .

In the series of tests reported in this paper we did not do this, but rather
restricted our sampling to strings z of length approximately y/n. Limitations of

444 ARUN K. JAGOTA AND KENNETH W. REGAN

time and hardware led us to avoid working with seed strings of length close to n,
as sampling according to g would require. We felt that if the phenomenon raised
above were true, we could detect it more readily by limiting the sample to graphs
known to have relatively high weight under g, and comparing that to samples
drawn from the uniform distribution. Our choice of quadratic compression was
partly motivated by the hard-to-approximate graphs in [4; 1]. These graphs are
described by a fixed oracle for an NP-complete language, and an instance z of
some length m. The graph G/, has m®® vertices which represent accepting
transcripts of the protocol (see [4]), two of which are joined by an edge iff the
oracle answers in the respective transcripts do not contradict each other. It is an
open question whether the “O(1)” can be reduced to nearly-linear; even if so, the
bit-size of G 5/ isstill bounded below by %mz (with judicious padding just in case
M rejects).

The decoding strategy we used was to regard z asi - y - P', where ! is a self-
delimiting description of the length of the argument y and P’ includes the bits for
P aswéll its self-delimiting description (number of functionsin P; number of bits
for each of their parameters). The advantage of this decoding strategy is that y and
P scale well with length of z. The seeds were recorded to make the experiments
repeatable. See the Appendix for implementation details.

The following description of the eight basic string functions from [5] assumes
that the shown occurrences of substrings meeting the ‘if’ conditionsare leftmost in
z, and for R2, R3, and E, that the " parameter strings’ u, v, ..., al have the same
length.

RO, () : If x = ur thenyr, else x.

R1,,(z) . If x = tur thentyr, else x.

R2, 44, (z) : If x = sutvr then sytzr, else x.

R3y pw,y,-(2) If 2 = sutyvtowr with |t1| = [to| then sutiytozr, elsex.
E, ,(x) : Simultaneously replace every 0 in z with « and every 1 with v.
Cup(z) i If 2 = E, ,(y) for somey then y, else z.

Ay (z) : Add atail of |z| log |z|-many copies of u to z.

D, (z) : Deletethe maximal tail of w’sin z.

Therearetwo constructors; functional composition, and “ iterated replacements’
of the form (R)*(x), where R is a composition of any number of RO... R3 func-
tions, and R is applied |z|-many times. The main theorem of [5] states that every
function computed by a random access machine in nearly linear time (NLT) is
computed by some program in £, and vice-versa. Thus £ is universal for NLT
computation. This justifies regarding q as an efficiently computable analog of m.
However, it should be pointed out that whereas the parameter strings u, v, .. .,
are fixed in individual L£-programs, the definition of q effectively quantifies over

PERFORMANCE OF NEURAL NET HEURISTICS 445

them. This alows for quadratic and greater expansions. Except for cases where an
occurrence of C,, ,(-) or D, (-) causes a large contraction of an expanded string,
the time remains nearly linear in the length of the output.

Themain practical reasonfor using £ isitssimplicity and ease of implementabil-
ity. Also, while the expansion operations E and A always apply, the contraction
operations C' and D most often have no effect. Hence £ has a bias toward expan-
sion which is not unnatural, and which reducesthe sampling time. Indeed, we were
surprised to find that no fewer than one out of every six randomly chosen seeds
expanded out to alarge enough graph.

4. TheNeural Network Algorithms

All neural network algorithms evaluated in this paper are based on the Hopfield
model [7; 8], and are described in detail in [9]. Here we describe them only briefly,
without explaining their neural network implementation in much detail. It isworth
noting that all these algorithms arise as manifestations of essentially asingle meta-
algorithm: one that minimizes the usual energy function in the Hopfield model [7;
8].

4.1. DISCRETE ALGORITHMS

Steepest Descent. Steepest Descent (SD) is adiscrete serial-update neural network
heuristic that minimizes energy in greedy fashion. In each time step, the unit to
switch decreases energy by the maximum amount. We use the notation S D (Vp) to
denote the Steepest Descent starts initially from some subset 1y C V' of vertices.
SD iteratively transforms Vp into amaximal clique C, terminating efficiently within
2n iterations[9]. Let V; denotethe vertex set in iteration 4 and assumethat it is not
amaximal clique. SD emulates the following heuristic in iteration i:

If V; isnot aclique then

remove a minimum degree vertex in induced subgraph G[V;] from V;
elseif V; isaclique then

addto V; avertex in V'\ V; that is adjacent to every vertex in V;.

Ties are broken lexicographically.

p-annealing. p-annealing isanother discrete serial -update neural network heuristic,
which works by carrying out annealing while minimizing energy. More precisely,
acertain parameter of the network, called p, is varied while the network minimizes
energy by steepest descent. This is analogous to varying the temperature T' in
simulated annealing. Like T' in simulated annealing, increasing the parameter p
has the effect of progressively tightening the constraints until, eventualy, the
solution becomes feasible (a clique in our case). We omit the precise description

446 ARUN K. JAGOTA AND KENNETH W. REGAN

of p-annealing here, for which the reader isreferred to [9]. An intuitive description
isasfollows.

1. Start with small p and with theinitial state Vo := V.

2. Run SD(Vp) with this value of p to transform Vg into U.

3. Increase p, set Vp := U, and go to step 2.

The algorithm is terminated when p becomes sufficiently large. It turns out
that when p is small, the set U retrieved in step 2 is not required to be a clique;
however as p is increased, certain constraints get ever tighter, ultimately forcing
U to be a clique. In other words, like simulated annealing, this algorithm starts
with loose constraints — allowing an unbiased exploration of the search space —
and progressively tightensthem until the final solution U formsaclique. A precise
characterization of the behavior of this algorithmisin [9].

Stochastic Steepest Descent. Stochastic Steepest Descent (SSD) is a randomized
variant of SD. The deterministic moves of SD are replaced by energy-minimizing
moves that favor the steepest direction, but probabilistically. More precisely,

The unit to switch is picked with probability proportional to the amount of
energy its switch would decrease. (The probability is zero if the switch would
keep the energy same or increaseit.)

The algorithm is motivated by the desire to randomize the choice of unit to
switch, which allows one to use repeated runs of the algorithm to boost the size of
the cligue found, while not totally relinquishing the greedy heuristic emulated by
SD, which often works well (see Tables 1 and 2, and [9]).

Let SSD(Vp,4) denote i runs of SSD on a given graph, with V4 as the initial
state (vertex set) in each run. (Note that the initial state is the same in each run.)
The largest clique found in a run is the output of the algorithm. One run of SSD
terminates within 2n unit-switches (iterations) [9], which keeps one run as efficient
as SD.

4.2. CONTINUOUSALGORITHMS

The description of the continuous algorithms assumes familiarity with the contin-
uous Hopfield model [8].

Continuous Hopfield Dynamics. This algorithm, called the continuous Hopfield
dynamics(CHD) [8; 6], isdescribed by a system of n coupled nonlinear differential
eguations, presented herein discretized form:

S(t+1):=85(t) +vy(=S©E) +g(WS(t) + I)). (2)

Here S; € [0,1] is the state of the i** neuron, I; the external bias of the i‘"

neuron, W the n x n symmetric weight matrix, gy (z) = m;—m a sigmoid with

gain)\, g(z) notational shorthand for (¢g(z;)), and v the Euler step size. The

Table 1. 100-vertex graphs sampled from g(z). The column MAX gives the size of the maximum clique when known, computed

using df nmax, an exact semi-exhaustive search algorithm.

Graph SD() SD(V) p-A SSD(@,1) SSD(V,1) SSD(@,n) SSD(V,n) CHD MFA MAX
Gl 5 8 8 7 6 9 11 10 11 11
G2 10 29 29 29 29 29 29 29 28 29
G3 8 21 21 11 14 21 21 16 21 21
G4 4 9 9 4 7 8 9 4 8 9
G5 9 8 8 5 10 10 10 7 10 10
G6 17 40 40 36 30 40 40 40 40 40
G7 7 12 13 7 6 11 13 9 13 13
G8 5 6 6 5 5 6 6 6 5 6
G9 4 3 3 4 2 4 4 4 3 4
G10 5 10 10 8 5 10 10 4 8 10
G11 7 22 2 11 16 21 22 16 22 22
G12 3 27 27 6 8 27 26 27 27 27
G13 8 13 13 9 9 14 14 7 13 15
G14 5 7 7 4 4 7 8 4 7 8
G15 19 26 26 21 17 27 26 22 27 27
G16 4 3 3 4 2 4 4 4 3 4
G17 6 9 9 7 8 10 11 8 10 11
G18 15 31 31 4 23 31 31 31 31 31
G19 6 9 8 7 5 8 9 7 8 9
G20 15 31 31 31 31 31 31 31 30 31
G21 4 5 5 4 3 5 5 4 4 5
G22 9 26 26 13 16 26 26 21 26 26
G23 5 8 9 4 8 11 10 9 10 11
G24 5 9 9 8 7 10 10 8 9 10

SOI1SIdN3H 13N TVdN3N 40 IONVINHO4H3d

YA

Table 1. Continued

214%

Graph SD(@) SD(V) p-A SSD(#,1) SSD(V,1) SSD@ n) SSD(V,n) CHD MFA MAX

G25 5 4 4 4 4 4 5 4 5 5
G26 19 42 42 32 40 42 42 36 41 42
G27 100 100 100 100 100 100 100 100 100 100
G28 5 7 9 6 6 8 8 7 7 9
G29 16 21 21 11 16 23 23 13 21 23
G30 5 9 9 11 8 12 12 9 10 13
G31 3 3 3 2 3 4 3 3 2 4
G32 15 39 39 18 21 39 39 38 38 39
G33 60 60 60 38 57 65 60 60 60 60
G34 8 8 8 6 4 13 13 5 7 13
G35 5 35 35 25 35 35 35 35 35 35
G36 8 10 11 8 10 11 11 7 11 12
G37 3 2 2 2 2 3 3 2 2 3
G38 8 13 13 7 9 13 13 7 13 13
G39 4 17 17 10 6 16 17 17 17 17
G40 8 29 29 27 11 27 29 29 29 29
G41 5 11 11 8 4 13 12 8 11 13
G42 4 5 5 5 3 5 5 5 4 5
G43 7 21 21 8 11 20 20 18 21 21
G44 2 26 26 26 24 26 26 26 25 26
G45 12 37 37 21 32 37 37 37 36 37
G46 3 6 6 2 3 5 6 5 6 6
G47 6 12 13 7 10 13 14 9 14 14
G48 4 6 6 4 6 7 7 5 6 7
G49 4 11 11 4 9 10 11 8 11 11
G50 6 10 10 7 8 12 13 10 13 13
Avgs. 1020 18.20 1842 12.96 14.26 18.76 19.00 16.62 1838 19.20

NVO3d ‘M HLINNIHN ANV VLOOVL "M NNIV

Table 2. 400-vertex graphs sampled from q(x). The column labeled MAX contains the maximum clique size, computed as
described in Table 1. A > in the MAX column indicates the maximum clique was not found for that graph — either because
df max did not (or it was anticipated it would not) terminate in reasonable time.

Graph SD(@) SD(V) p-A SSD(#,1) SSD(V,1) SSD(@,n) SSD(V,n) CHD MFA MAX

Gl 6 16 16 9 6 12 15 16 15 17
G2 12 90 90 16 12 90 90 90 90 >90
G3 12 36 39 10 27 34 40 39 41 41
G4 16 166 166 130 144 163 166 166 166 >166
G5 20 130 130 100 40 130 130 130 130 >130
G6 10 31 33 20 22 27 34 26 29 38
G7 8 26 26 19 17 27 26 23 27 30
G8 4 43 43 11 21 43 43 41 43 >43
G9 4 23 23 9 5 22 23 22 23 23
G10 8 25 30 9 13 29 30 20 23 30
Gl1 11 74 74 28 35 72 74 74 74 >74
G12 3 68 68 47 23 68 68 67 65 >68
G13 8 35 35 17 6 32 34 34 34 35
Gl4 10 25 25 14 11 25 25 15 24 26
G15 11 93 93 85 65 93 93 63 62 >93
G16 21 51 51 35 55 65 65 65 64 >65
G17 47 115 115 64 115 114 115 83 114 >115
G18 41 141 141 92 100 139 138 122 141 >141
G19 4 11 11 5 10 13 14 10 14 15
G20 7 27 27 11 11 27 22 16 28 29
G21 12 80 82 24 39 82 82 61 80 >82
G22 15 40 58 39 52 76 76 76 57 >76
G23 6 59 59 15 29 53 59 56 59 >59
G24 2 132 132 75 131 132 132 132 132 >132

SOI1SIdN3H 13N TVdN3N 40 IONVINHO4H3d

6i

Table 2. Continued

Graph SD(®) SD(V) p-A SSD(#,1) SSD(V,1) SSD(@,n) SSD(V,n) CHD MFA MAX
G25 4 35 35 7 7 34 35 34 33 35
G26 5 14 20 20 12 25 24 21 27 27
G27 6 18 18 9 8 14 15 8 16 18
G28 135 135 135 6 97 135 135 135 135 >135
G29 60 71 71 28 67 72 72 72 72 >72
G30 5 14 14 9 12 14 14 11 12 14
G31 192 226 226 222 223 225 226 205 225 >226
G32 3 125 125 111 105 125 125 124 123 >125
G33 11 13 13 12 10 13 13 13 13 13
G34 9 16 17 10 9 16 16 16 17 19
G35 8 25 24 11 27 25 27 23 25 29
G36 6 27 27 22 10 29 27 12 26 29
G37 25 56 56 56 28 56 56 20 57 >57
G38 4 22 22 5 10 21 21 20 22 22
G39 166 193 188 197 177 200 203 174 194 >203
G40 9 28 28 51 10 51 51 28 27 51
G4l 11 92 93 62 78 93 93 80 93 >03
G42 17 56 42 30 20 55 56 40 43 56
G43 13 17 29 17 19 33 30 17 29 34
G44 19 57 57 43 a4 59 58 46 58 >59
G45 6 52 62 17 30 62 62 58 62 >62
G46 8 50 70 40 32 69 69 43 69 >70
G47 4 7 7 7 3 7 7 7 6 7
G48 5 58 58 6 12 58 58 58 58 >58
G49 2 59 59 42 29 59 59 59 58 >59
G50 14 58 76 56 54 74 75 58 77 >77
Avgs. 2090 6122 6278 396 42.38 63.84 64.42 5658 6222 >65.36

oSy

NVO3d ‘M HLINNIHN ANV VLOOVL "M NNIV

PERFORMANCE OF NEURAL NET HEURISTICS 451

continuous-time version of (2) minimizes an energy function during its evolution
[8], into which the MAX-CLIQUE problem can be encoded [9]. With sufficiently
large A and sufficiently small v, if (2) is started from any initial state S(0) € [0, 1]
and iterated sufficiently-many times, it provably terminates at afixed point S from
which amaximal clique of the encoded graph can be recovered [9].

For a discussion of the significance of CHD from the point of view of neural
implementation and optimization applications, see [8; 6; 9]. CHD is especialy
interesting because it may be viewed as the essential special case of the algorithm
presented next — a continuous optimization method developed only recently, but
one that is already beginning to make its mark on optimization as it occurs in
practice.

Mean Field Annealing. The second continuous heuristic, called Mean Field
Annealing (MFA) [2; 17], may be described as a generalization of CHD in which
the sigmoidal gain X is varied during the evolution of (2). Thisis done by employ-
ing an annealing schedule, asequence { \;, i; } of k& elements, where)\; isthe value
of the sigmoidal gain and p; the number of times (2) is to be iterated with the
sigmoidal gain set a ;. Usually A; is a monotonically increasing function of .
The detailed algorithm is as follows.

S :=5(0)
fori:=1tok do
for j :=1topu, do
S:=8+y(=S+g\,(WS+1I)

With sufficiently small + and sufficiently large u;, S converges to a fixed
point at each value of 7 [8; 6]. Additionally, with sufficiently large &, and with A;
growing sufficiently slowly with z, MFA isknown to deterministically approximate
simulated annealing during its evolution [2; 6], while being more efficient.

5. Experimental M ethodology

All experiments on the neural network algorithms and their evaluation on u(n) and
g(z) were performed on a SUN SparcStation |.

Details of the Sampling Process. Experiments were performed on 100-vertex
graphs and on 400-vertex graphs. The bitstrings of the 100-vertex graphs had
length 4950, and those of the 400-vertex graphs had length 79,800. For n = 100
andn = 400, three sets of fifty n-vertex graphswere generated. One set was drawn
from the uniform distribution with p = 0.5, and onewith p = 0.9. All seed strings
were generated using the standard UNIX pseudorandom number generator, and
recorded to make the experiments repeatable.

The third set was generated using seed strings of lengths 65..85 for the fifty
100-vertex graphs and eleven of the 400-vertex graphs, and 270..285 for thirty-

452 ARUN K. JAGOTA AND KENNETH W. REGAN

nine of the 400-vertex graphs. When we compiled the 100-vertex set we found
that eleven seeds expanded to strings of length greater than 79,800. Rather than
truncate them to length 4950, we decided to discard them from the 100-vertex
sample but include them into the 400-vertex sample. For hardware reasonswe a so
set alimit of 700,000 on the number of bits produced at any stage of the decoding,
and discarded those seeds which broke it from the 400-vertex sample. We believe
that these practical decisionsdid not bias our resultsin any significant way. It took
about 12 hours of computing time to assemble this set.

Thelong stringsof Osand 1sweretruncated to length 4950 or 79,800 and formed
into an adjacency matrix for the graph in the order (1,2), (1,3), (2,3), (1,4),... of
edges. Over three-fourths of these strings were generated by £-programs whose
final instruction was “Add atail of |z|-many copies of u to z”, where u wasfairly
long, and so ended with many repetitions of . We do not have an intuitive idea of
the extent to which this yielded repeated patterns in the graph.

Nine heuristics were tested on each of the six sets, giving 2700 runsin al. For
each 400-vertex graph, it took about two hoursto run all nine. The MFA heuristic
was by far the slowest of the lot.

Structural Comparisons of the Graphs. It is instructive to compare the q(n)
graphsversusthe u(n) graphson certain structural properties. The three properties
we adopted for comparison are: m(G), the number of edgesin agraph G, (A —
9)(G) the difference between the maximum degree and the minimum degreein a
graph G, and w(G), the order of amaximum cliquein agraph G. The numbersare
presented below.

Property q(100) q(400) Uo.5(100) Uo.5(400)
min, avg, max min, avg, max min, avg, max min, avg, max
m 343,2313.1,4950 | 3958,38189.9,68491 | 2402,2477.4,2553 | 39528,39867.4,40161
A—9 0,39.8,96 24,186.1,389 20,24.7,30 50,59.34,73
w 3,19,100 7,—>226 97,9.99",10" 127,12.997,13"

Each group of three columns is associated with a particular class of graphs. In
any particular row, the three values associated with a particular class of graphsare
the minimum, the maximum, and the average values of the property associated
with that row, taken over the fifty graphs of that class. The *-ed values are very
sharp estimates taken from random graph theory.

From the above numbers we see that the (n) graphs spanned a wide range of
densities—from the very sparseto the very dense—whiletheir average density was
very closeto that of augs(n) graph. The difference between the maximum degree
and the minimum degree of aq(n) graph was also spread over awide range, with
alarge average value. (Notice that this says two things: (i) in most graphs, there
was a large gap between maximum and minimum vertex degree and (ii) this gap

PERFORMANCE OF NEURAL NET HEURISTICS 453

itself had alarge variance.) Finally, the maximum clique sizes of q(n) graphswere
also in awiderange.

In striking contrast, for graphs drawn from ugs(n) al three numbers —m: the
number of edges, A — ¢: the maximum degree minus the minimum degree, and
w: the order of the maximum clique — were confined in a very narrow range. In
addition, the average value of A — § was itself very small, indicating that most
degrees are bunched together. This gives some indication of the diversity of the
q(n) graphsin comparison with those drawn from ug s(n).

Sample Sizes. Each set of test graphs contained fifty graphs. It is reasonable to ask
if this sample size is adequate. For graphs drawn from u,(n), several arguments
lead to the conclusion that a sample size of fifty graphs is more than adequate for
our purposes. First, the expected size of the maximum clique in a graph drawn
from u,(n) has a sharp threshold [15] and the range of sizes of maximal cliques
in such graphs is aso quite narrow. Thus, any maximal-clique finding algorithm,
for example most of the ones in the current paper, is guaranteed to find a clique
in anarrow range. This argument is reinforced by experimental results reported in
[9], which give the distribution of clique sizes found in fifty graphs drawn from
u,(400), p = 0.5, 0.9, which turns out to have avery small variance.

For graphsdrawnfrom q(z), however, it wasnot clear apriori when an adequate
samplesize should be. We decided to start with asamplesize of fifty. Onthissample
size, theresultsreported in Tables 1 and 2 (see Section 6 for their presentation and
analysis) displayed certain trends so clearly and consistently that we felt confident
that our observations were sound and the trends would remain similar on larger
sample sizes.

Evaluating Performance. The main hurdle in analyzing the results is that there
is no easy way of calculating the size of the largest clique in a graph. We could
have used some exponential-time algorithm to find the exact answer, but thiswould
have been quite time-consuming on the 2700 runs. Therefore, instead of comparing
the absolute performance of these algorithms on u(n) versus those on q(z), we
decided to compare their relative performances, in particular how well or poorly
certain algorithms performed relative to others, on u(n) versusq(z).

Parameter Settings of the Continuous Algorithms. The continuous algorithms
— CHD and MFA — use certain free parameters whose val ues heeded to be set. The
values that we used are described below to make the experiments independently
repeatable. One needsto refer to [9] in order to understand some of the parameters.

CHD was operated @t p = —10n, A = 1, v = 0.1, I; = |p|/4 for dl 4, and
with the number of iterations of (2) fixed in advanceto n. Theinitial stateto CHD
was set to S(0) := (0.5+ §)™, where § was arandom valuein [—0.05, 0.05]. The
settings are the same asin [9], and are motivated there.

454 ARUN K. JAGOTA AND KENNETH W. REGAN

MFA was operated with the same settingsfor p, A, ~, I, and theinitial state S(0)
aswas CHD, and with the following geometric annealing schedule:

2
T =a; 1T 1,71 = 6n|p|

wherea; = 0.9 fori < 4and a; = 0.5for i > 4. Here T; = 1/);. The settings
are essentially the same asin [9], and are motivated there. Experimental resultsin
[9] aso revea that CHD and MFA continue to work well on the graphs tested in
[9], on parameter settings in a reasonably large neighborhood of those described
above.

6. Experimental Results

Tables 1 and 2 give the size of the clique retrieved by each of the nine algorithms,
on fifty 100-vertex and fifty 400-vertex graphs sampled from q(x) respectively.

SD(1) is the steepest descent algorithm whose initial state is the empty set. It
emulates the naive heuristic:

Start from the empty set and extend it, by adding, in each step, one suitable
vertex selected lexicographically, until it forms amaximal clique.

SSD(#, 1) is arandomized version of SD(() in which the vertex to be added is
selected randomly, from the feasible choices, instead of in lexicographic fashion.
SD(V) is the steepest descent algorithm whose initial state is the entire vertex set
V. It turns out that SD(V') emulates the following algorithm [9]:

S=V
while S isnot aclique do
Pick avertex v € S with minimum degreein S
Deletev from S
endwhile
while Sis not amaximal clique do
Pick smallest-numbered vertex v ¢ S adjacent to every vertex in S
AddvtoS
endwhile

SSD(V, 1) isarandomized version of SD(V') inwhich the vertex to bedeletedinan
iteration of thefirst loop is picked with probability proportional to .S — degreeq(v)
(the smaller the degree, the higher the probability), and the vertex to be added
in an iteration of the second loop is picked at random from the feasible choices.
SSD((), n) and SSD(V, n) are multiple restart versions of SSD((), 1) and SSD(V, 1)
respectively —the largest clique found in the n runsis output.

From Tables 1 and 2, the following observations can be made:

PERFORMANCE OF NEURAL NET HEURISTICS 455

— SD() works the poorest. SSD(), 1) and SSD(V, 1) work moderately better
but remain significantly poorer than the best algorithms. Thus, randomization
alone helps but not as much as one might expect.

— SD(V) works much better than SD(()) and nearly aswell asthe best algorithms.
Thusreplacing theinitial state of SD(()) by V', which makes the SD algorithm
greedier, improves the performance much more dramatically than by random-
izing SD()) alone. Randomizing SD(V), to get SSD(V,1), in fact worsens the
performance significantly.

— The p-annealing algorithm consistently works just slightly better than SD(V).

— The multiple restart algorithms — SSD((), n) and SSD(V, n) — work the best,
with SSD(V, n) working just very dlightly better. This shows that the real
benefit of randomization is that it allows multiple restarts, which boosts per-
formance immensely.

— The continuous agorithm CHD works moderately poorer than the continuous
algorithm MFA, which was anticipated, but al so works discernibly poorer than
the discrete algorithm SD(V'), which was not anticipated.

These observations hold for both Tables 1 and 2 — if anything, the effects are
more pronounced in Table 2 thanin Table 1.

From these results we may cluster the algorithms into four groups, using the
size of the clique found as the measure. In order of decreasing performance, the
clustersare:

1. SSD(V, n), SSD(®, n), p-annealing, MFA, and SD(V).
2. CHD.

3. SSD(V, 1) and SSD(, 1).

4. SD(0).

6.1. COMPUTING THE MAXIMUM CLIQUE SIZE

To compute exact performance ratios of our neural network algorithms on the
g(z) graphs, we ran an exact semi-exhaustive search program, called df nax, to
find a maximum clique on al fifty graphs from q(100), and twenty three graphs
from g(400). The program df max isa C version of the code described in [3], and
was implemented by D.S. Johnson and used earlier as a benchmark in the Second
DIMACS Challenge.

In addition to allowing computation of exact performance ratios, these experi-
mentsal so provided an unanticipatedinsight. In particular, they revealed that df max
slowed down tremendously on several of the q(400) graphs. We ran df max on only
23 graphs — the ones with the smallest cliques — on which it found a maximum
cligue quite quickly. We tried df max on several of the remaining 27 graphs with
larger cliques. In al caseswetried, df max ran for several days—in some casesfor
two weeks—without finding a maximum cligue. We were forced to terminate these
runs, and did not even attempt to evaluate df max on the graphs we hadn’t tried on
(the oneswith even larger cliques).

456 ARUN K. JAGOTA AND KENNETH W. REGAN

For comparison, weran df max on random graphs, on which it wasableto find a
maximum cliquein each of fifty graphsdrawn from ug 5(400) in timeranging from
43.9 to 53 seconds. These findings reinforce the indication from the performance
ratio results (see Tables 1 and 2) that graphs drawn from q(n) are harder than those
drawn from u(n), and that, asn increases, the q(n) graphs get harder more quickly
than do the u(n) ones.

It is to be noted that when we ran df max on a graph from ug 9(400) it ran for
fifteen hours without giving an answer, at which point the run was terminated.
Although this does seem to indicate that dense random graphs are harder for df max
than uniform random graphs, it does not give any indication of whether the u(0.9)
graphs are as hard as the q(400) onesfor df max.

It is reasonable to suspect that, because df max is a semi-exhaustive search
algorithm, the reason it ran efficiently on the up 5(400) graphsis that they all had
very small maximum cliques, while the reason that it ran so poorly on the q(400)
graphs with large cliques (and also on the one dense random graph) is precisely
because they have large cliques. That graphs with large maximum cliques arise
frequently in g(z) is to be expected (they almost never arise in ugs(x)) and if
this causes problems for df max, then so be it. It is worth noting that the relative
performanceratio of SD(()) to the best heuristic was 10.93 and 7.57, averaged over
these twenty seven and the entire set of fifty q(400) graphs respectively. Thus,
these twenty seven graphs not only seem hard for df max but are also harder on
average for SD()) than the remaining onesin q(400).

Finally, thesedf max experiments revealed the practical difficulty of conducting
experiments on the g(n) graphsfor all but small .

6.2. THE(Q(n) VERSUS Ug5(n) COMPARISONS

Table 3 gives the clique sizes found by these nine algorithms on random graphs,
i.e. graphs drawn from u,(n). The relative rankings of the algorithms in Tables
1, 2, and 3 are mostly the same, though there is one notable exception, explained
later in this paragraph. The performance differentials between these algorithms are
however far wider on graphs drawn from q(z) than on graphs drawn from u,,(n).
On graphsdrawn from uy /,(n), the clique sizes obtained by all nine algorithmsare
inasmall range. SD((}) remains the poorest working algorithm, but only marginal-
ly so. On graphs drawn from ug g(n), the range of clique sizes gets larger and so
do the performance differentials, although most of the relative rankings remain
unchanged. The one notable exception is the MFA algorithm which performs sig-
nificantly better than all the others. Although MFA worked very dlightly poorer
than the multiplerestart algorithms on graphsdrawn from q(x) it works significant-
ly better on graphs drawn from ug o(n). Another interesting feature of the graphs
drawn from uy»(n) versus those drawn from q(z) revealed by the algorithms is
that, whereas both types of graphs have roughly the same density, the algorithms,
on average, retrieve much larger cliqueson graphsdrawn from q(z) than on graphs

Table 3. Average performance on p-random graphs. Thistable is excerpted from Table | in [7].

n p SD@® SD(V) p-A SSD(@,1) SSD(V,1) SSD(@,n) SSD(V,n) CHD MFA
100 05 634 798 806 648 6.42 8.36 8.60 744 850
100 09 2386 2816 2834 2340 24.82 27.60 28.76 2792 30.02
400 05 830 98 1034 844 8.24 10.80 11.04 9.16 10.36
400 09 3612 4380 4458 3584 36.82 41.86 43.20 4324 49.94

Table 4. Average performance ratio SSD(V, n)(G)/A(G) on dl graphs. The numbers for the g graphs are
obtained by averaging over the performance ratios, not by taking the performance ratio of the average.

Source SD(#) SD(V) p-A SSD(#,1) SSD(V,1) SSD®,1) SSD(V,n) CHD MFA
q(100) 242 110 109 1.79 1.60 1.03 — 131 110
Gs(100) 135 108 107 137 132 1.02 — 115 101
Go(100) 120 102 101 123 1.15 1.04 — 103 096
q(400) 756 109 103 264 2.19 1.02 — 124 105
Gs(400) 133 112 107 131 1.33 1.02 — 121 102
Go(400) 119 099 097 121 117 1.03 — 1.00 087

SOI1SIdN3H 13N TVdN3N 40 IONVINHO4H3d

LSy

458 ARUN K. JAGOTA AND KENNETH W. REGAN

drawn from uy»(n). Certainly this is not surprising as it is reasonable to expect
a correlation between the compressibility of graphs drawn from q(z) and the fact
that they contain large cliques.

The relative performance ratio of algorithm A to agorithm B on graph G is
defined asthe cligue size found by B divided by the clique sizefound by A. Table4
givestherelative performanceratio of each algorithmto SSD(V, n), averaged over
graphs drawn from g(z) and over graphs drawn from uy,(n). SSD(V, n) is chosen
as the reference algorithm because it works best on graphs drawn fromq(z). The
results reported in Table 4 are drawn from the earlier tables. The results viewed
in this fashion tend to support our earlier observations in more dramatic fashion.
For example, SD(()) has a poor relative performance ratio, 2.42, on graphs drawn
from q(100), which worsens markedly, to 7.56, on graphs drawn from ¢(400). By
contrast, SD()) has much better relative performance ratios on graphs drawn from
u,(100), p = 0.5, 0.9, which remain unchanged on graphs drawn from u, (400),
p=0.5009.

The absolute performance ratio of algorithm A on graph G is defined as the
maximum clique size in G divided by the clique size found by A. Table 5 gives
the exact, estimated, or lower-bounded absolute performance ratio. For the three
poorest algorithms, the Table 5 results reveal essentially no new information (the
poorest algorithms are revealed to be just slightly poorer than known from Table
4). However, for five of the remaining six algorithms they reveal good news — all
except CHD perform near-optimally on the g(n) graphs, with CHD not far behind.

7. Discussion

In thiswrap-up section, we have chosen to adopt arather unusual format —question
and answer —which wefeel justified given the nature of this paper. These questions
originate from the anonymous reviewers.

Q1: This combination of theory and experiment might be misleading, favoring
an overestimation of the applicability of theoretical results on the universal
distribution to the practical problem of test instance generation.

Thisisagood point and our response to that takes the following form:

The experimental results neither confirm nor refute the validity of the precise
theoretical result in practical situations. They do give evidence of the follow-
ing, somewhat weaker, phenomenon associated with the theoretical result.

The theoretical result states that graphs drawn from m(n) draw out worst-
case performance ratio from any given algorithm. The experimental results
show that graphs drawn from q(n) — a heuristic analogue of m(n) — draw out
poorer performance ratio than on graphs drawn from u(n), from three of the
nine evaluated heuristic algorithms. Moreover, these three are the ones that
also happen to work poorest on graphsdrawn fromu(n) (although significantly
better on u(n) than on q(n)).

Table 5. Average absolute performance ratiosw(G) /A(G) on dl graphs. The numbers reported in the rows for
g(100) and q(400) are exact ones and lower bounds respectively, computed using the MAX columns of Tables 1
and 2. The numbersreported in therowsfor G 5(100), G.9(100), G.5(400), and G.o(400) arevery sharp estimates,
found using the very sharp estimate on the maximum clique size in arandom graph.

Source SD(#) SD(V) p-A SSD(@ 1) SSD(V,1) SSD(@n) SSD(V,n) CHD MFA

q(100) 2.46 112 111 182 163 104 1.02 134 112
G.s(100) 1.58 125 124 154 156 120 116 134 118
G.o(100) 1.47 124 123 150 141 127 122 125 117
q(400) >7.68 >113 >1.07 >271 >2.26 >1.05 >1.04 >129 >1.09
G.5(400) 157 1.32 126 154 1.58 1.20 118 142 125
G.o(400) 152 1.26 123 153 1.49 131 127 127 110

SOI1SIdN3H 13N TVdN3N 40 IONVINHO4H3d

65

460 ARUN K. JAGOTA AND KENNETH W. REGAN

In a sense the results — that three particular algorithms perform poorly, while
the others don’'t — are not unexpected. We claim that these three algorithms are
intrinsically weaker than the others. In support of this claim, we note that these
exact three algorithms perform poorest on ugs(n). It was aso shown in [9] that
on acertain distribution of graphs quite different from bothu,(n) and q(n), these
samethree algorithms performed the poorest. Viewed thisway, q(n) servesmainly
to amplify the differences amongst these algorithms. A plausible explanation for
why the others seem to remain robust on g(n) isthat our choices of n aretoo small.
It is reasonable to suspect that some of them might perform poorer on larger n. As
an extreme example, consider an exact algorithm. Obviously then, no matter how
largen is, it never performs poorly, in terms of solution-quality (though a solution
might not be forthcoming in reasonable time).

Q2: It is easy to see that it is possible to make the choices of language
L, decoder D and the simulator U in such a way that an arbitrary given
optimization heuristic is favored or disfavored by the resulting test instances.

This might be so, but this is hot what we did. Our design of the g-sampler was
not influenced in any way by any optimization heuristic. Indeed, if one examines
the g-sampler algorithm, it is hard to imagine where a bias for or against any
particular algorithm could have crept in even by accident.

Q3: The approach seems to be less suited for comparing heuristics in an
objective way than e.g. the uniform distribution.

This is certainly the case. It is unfortunate that m(z) is not computable, let
alone tractable. One has no choice then, but to resort to a heuristic approximation,
which certainly introduces some degree of arbitrariness. The best one can do is
to minimize the arbitrariness exhibited by the heuristic approximation chosen. We
havetried to achievethis.

Consider arguing this another way. View the situation as a trade-off between
objectivity and relevance. At one extreme is the uniform distribution — efficiently
computable and objective — but, we argue, not very relevant (if oneis to believe
that the real world is highly structured, i.e., compressible). At the other extreme
are distributions highly relevant to particular applications, but not objective. The
distribution q(x), we argue, is in the middle; it is more relevant than the uniform
distribution while being more objective than application-specific distributions.

Q4:1sq(z), at all, an “ approximation” to m(x)?

In arigorous sense, it seems to us, no. The terminology has been revised to
call it a heuristic analogue. We think it servesthis role reasonably well, as argued
earlier.

Q5: The replacement of arbitrary programs by programs in nearly linear
time might essentially change the situation (note that this replacement also
obstructs the proof of Theorem1).

PERFORMANCE OF NEURAL NET HEURISTICS 461

That it obstructsthe proof isclear. That it essentially changesthe situationis not
clear. In particular, as explained at the end of Section 2, areasonable phenomenon
capturing the spirit of Theorem 1 is not ruled out if m is replaced by an efficient-
ly samplable analog, provided it is reasonably diverse. Indeed, the experimental
results may be viewed as a means of testing this question (given that testing under
m(z) is infeasible). The results give convincing (even if partial) answers in this
regard.

Q6: Dealing with the uniform distributions ugs(z) and ugg(z), in reality
pseudorandom numbers have been used. In the given investigation context,
this makes an essential difference, since a long sequence of pseudorandom
numbers can be considered as a set of highly compressible data, while real
randomnumber sare non-compressible by definition. Thus, what hasbeen done
in fact is that one set of compressible problem instances has been compared
with another such set.

Thisis agood argument. We respond to different aspects of it individualy.

First, using pseudorandom numbers instead of true random numbers does not
make an essential difference in this application. It iswell known that the structural
properties of graphs drawn from ug s(z) and ug.o(x) in practice via pseudorandom
numbers are in excellent agreement with those calculated from theory (which
assumes perfect random numbers). Our own experienceis consistent with thisfact.
The properties that our own experiments (and those of others in the published
literature) reveal to be in excellent agreement are: average vertex degree, graph
density, and maximum clique size. For instance, the maximum clique sizes found
by exact algorithms on such random graphs are in excellent agreement with sharp
estimatesknown from random graph theory derived by Matulaand morerigorously
by Bollobas & Erdés.

Second, the bitstrings we obtained (from our pseudorandom number generator)
to generate the u(n) graphs were entirely unstructured as far as we could tell
while the bitstrings we obtained from the g-sampler revealed themselves to be
highly structured, even on casual visual inspection. It is reasonable to suspect that
the bitstrings derived from pseudorandom numbers would pass simple tests for
randomness; there is no doubt that the bitstrings from the g-sampler would not.

Finally, the graphs produced by pseudorandom generators are compressible.
However, in any polynomial size family of such graphs, aimost surely only atiny
fraction of those produced by the universal decompressor q(x) would arise. Said
in amore down-to-earth way: if one repeatedly samplesfrom u(z), onerepeatedly
gets graphs with the same structure (i.e., lack of it); in striking contrast, if one
repeatedly samplesfrom q(z) one gets graphs with awide variety of structures.

Acknowledgements

Theauthorsthank Marcus Peinado for helpful discussions, and for running prelimi-
nary experiments on some graphs drawn from q(1000) revealing theimpracticality

462 ARUN K. JAGOTA AND KENNETH W. REGAN

of computing their maximum clique size in reasonabl e time. The authorsthank the
anonymous reviewers, especialy reviewer #1, for their excellent comments that
have greatly improved this paper.

Appendix: A Practical Guideto the q(z) Sampler

In this appendix we describe the q(z) sampler at alevel appropriate for users who
might consider evaluating their algorithms on test data sampled from q(x). At the
end of this section, we also give instructions on how to fetch the software.

A macro-level description of the sampling procedure is as follows:

Algorithm q(z)-Sanpl er
1. Generatearandom string s in {0, 1}".
2. Decodes togiveapair (P, z), where P isaprogramin the formalism explained
in Section 3 and x isabinary string.
3. Run program P on binary string = and output binary string y.

The string s is then a description of the string y.

Inpractice, theq(xz)-Sanpl er iscalled repeatedly and only those stringsy whose
lengths exceed that of s by a certain threshold are kept, all others are thrown away.
This ensures that the remaining strings are compressible by a certain minimum
amount.

THE IMPLEMENTATION OF STEP 2

The algorithm to decode a string s into a pair (P,) was designed to ensure that
almost every program that could be the target of some string s’ of length m had
nonzero probability to be the target of arandom string s. The decoding procedure
is sketched below.

1. Interpret the first M bits of s as storing the length |z| of .

2. Interpret the next |z| bits as storing .

3. Let r denote the number of bits remaining at this point. Interpret the first “O—g”
bits of these remaining r bits as storing the number of noniterated operatorsin
the program P.

4. Let o denote the number of operators found above. Interpret the next Uo—g"J
bits as storing the number of iterated operators. These are obtained by placing
balanced parentheses around subsequences of non-iterated operators.

5. Interpret the next set of bitsto indicate where the parentheses should be placed.

6. Interpret the next set of o x 3 bits as the actual codes of the non-iterated
operators. There are 8 such operators, so 3 bits suffice to identify individuals
amongst them.

PERFORMANCE OF NEURAL NET HEURISTICS 463

7. Interpret the next set of bits to give the length of every parameter to every
operator.

8. Interpret the remaining bits asthe actual parametersfor al the operators, using
the knowledge of the syntax of every operator and the knowledge of the length
of every parameter computed in the previous step.

AN EXAMPLE

This example was constructed from an actual run using the software discussed
later. The following command was invoked at the uni x command line.

rsb 1 30 10 | nlt_dec 30 | nlt 100

The program r sb generates a random string of length 30 using 10 as the seed.
The program nl t _dec decodesthis string, taking the string length as a command-
line argument, and outputs the string z, followed by the program P. The operators
in P are identified by name and followed by their parameter strings. The operators
in P are sequenced under the assumption that P is to be executed from left to right,
with the first operator taking 2 as the input and producing an output string, which
becomes an input to the second operator and so on. The program nl t interprets P,
and executesit on the string z.

The actual strings and program produced in this example were:

010010111100000010011011100100
00 DO11 E10 01 RO O O .
1010

<xXo0
o
I n

The output y in this instance turned out to be shorter than s.

How TO FETCH THE q(x) SAMPLER

The q(z) sampler may be retrieved by anonymous ftp as follows:

ftp ftp.cs.buffal 0. edu
Nanme: anonynous

> cd users/jagota

> get nlt. READVE

> quit

Thefilenl t . READVE provides further instructions.

464 ARUN K. JAGOTA AND KENNETH W. REGAN

OTHER IMPORTANT USAGE DETAILS

The g(x) sampler can be used to generate compressible instances of any discrete
problem, whether on binary strings, or on structured objects such as graphs. One
needs to keep in mind the following issues however.

1. The good news is that the generation of compressible strings is quite efficient.

In our case, one of every six seed strings turned out to generate a highly
compressible string. To ensure this efficiency, however, the seed strings need
to be longer than a certain minimum length. We found that seed strings of
length less than 70 almost never generated compressible strings v, perhaps
because the programs P that result from such strings are too short and trivial
to generate compressible strings.

. Thebad newsisthat our implementation of ni t isquiteinefficient becausethe

codethat performs certain internal searchesthat need to be performed in order
to execute certain operatorsin P is not optimized.

References

1.

10.

11

12.

13.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of
approximation problems. In The Proceedings of the 33rd Annual |EEE Symposium on Founda-
tions of Computer Science, pages 1423, 1992.

. G. Bilbro, R. Mann, T.K. Miller, W.E. Snyder, D.E. Van den Bout, and M. White. Optimization

by mean field annealing. In D.S. Touretzky, editor, Advancesin Neural |nformation Processing
Systems, volume 1, pages 91-98, San Mateo, 1989. (Denver 1988), Morgan Kauf mann.

. R. Carraghanand PM. Pardal os. An exact algorithm for the maximum clique problem. Operations

Research Letters, 9: 375-382, 1990.

. U.Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating cliqueisamost np-

complete. In The Proceedings of the 32nd Annual | EEE Symposium on Foundations of Computer
Science, pages 2-12, 1991.

. Y. Gurevich and S. Shelah. Nearly linear time. In Proceedings, Logic at Botik, Lecture Notesin

Computer Science No. 363, pages 108-118. Springer-Verlag, 1989.

. J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation. Addison-

Wesley, 1991.

. J.J. Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences, USA, 79, 1982.

. J.J. Hopfield. Neurons with graded responses have collective computational propertieslike those

of two-state neurons. Proceedings of the National Academy of Sciences, USA, 81, 1984.

. A. Jagota, Approximating maximum clique in a Hopfield-style network. IEEE Transactions on

Neural Networks 6(3): 724—735, 1995.

A. Jagota, L. Sanchis, and R. Ganesan. Approximating maximum clique using neural network
and related heuristics. In D.S. Johnson and M. Trick, editors, DIMACS Series: Second DIMACS
Implementation Challenge 26: 169-204. AMS, 1996.

R.M. Karp. The probabilistic analysis of some combinatorial search algorithms. In J.F. Traub,
editor, Algorithms and Complexity: New Directions and Recent Results, pages 1-19. Academic
Press, New York, 1976.

M. Li and PM.B. Vitanyi. Kolmogorov complexity and its applications. In J. vanL eeuwen,
editor, Handbook of Theoretical Computer Science, pages 187-254. Elsevier and MIT Press,
Amsterdam/New York, 1990.

M. Li and PM.B. Vitanyi. Average case complexity under the universal distribution equals
worst-case complexity. Information Processing Letters 42: 145-149, May 1992.

PERFORMANCE OF NEURAL NET HEURISTICS 465

14. P. Miltersen. The complexity of malign ensembles. In The Proceedings of the 6th Annual |EEE
Conference on Structure in Complexity Theory, pages 164171, 1991.

15. E.M. Pamer. Graphical Evolution. Wiley, New York, 1985. Matula s theorem on page 76.

16. PM. Pardalos and J. Xue. The maximum clique problem. Journal of Global Optimization 4:
301-328, 1994.

17. C. Peterson and B. Soderberg. A new method for mapping optimization problems onto neural
networks. International Journal of Neural Systems 1: 3-22, 1989.

