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Abstract. The problem of finding the size of the largest clique in an undirected graph is NP-hard,
even to well-approximate, in the worst case. Simple algorithms, including some we study here, work
quite well however, on graphs sampled from u(n), the uniform distribution on n-vertex graphs. It is
felt by many, however, that u(n) does not accurately reflect the nature of instances that come up in
practice. It is argued that when the actual distribution of instances is unknown, it is more appropriate
to suppose that instances come from the Solomonoff–Levin or universal distribution m(x) instead,
which assigns higher weight to instances with shorter descriptions (i.e., to those that are structured
or compressible). We extend a theorem of Li and Vitanyi to show that the average-case performance
ratio of any approximation algorithm on random instances drawn from m(x) has the same asymptotic
order as its worst-case performance ratio. Because m(x) is neither computable nor samplable, we
employ a realistic analogue q(x) which lends itself to efficient empirical testing. We experimentally
evaluate how well certain neural network algorithms for Maximum Clique perform on graphs drawn
from q(x), as compared to those drawn from u(n). The experimental results are as follows. All
nine algorithms we evaluated performed roughly equally-well on u(n), where as three of them —
the simplest ones — performed markedly poorer than the other six on q(x). Our results suggest that
q(x), while postulated as a more realistic distribution to test the performance of algorithms than u(n),
also discriminates their performance better. Our q(x) sampler can be used to generate compressible
instances of any discrete problem.
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1. Introduction

The MAX-CLIQUE problem is to compute the size !(G) of the largest clique (i.e.,
complete subgraph) in a given graphG, and further to find a clique of that size. It has
long been known that !(G) is NP-hard to compute exactly, so interest has centered
on approximating !(G) closely enough to suit the many applications which can
be formulated in terms of MAX-CLIQUE. These include constraint-satisfaction,
object-recognition, and other real-world problems. Many approximation heuristics
have resulted from the study of neural networks for solving hard combinatorial
optimization problems (see [2; 17]) and are applicable to MAX-CLIQUE. For an
extensive survey on MAX-CLIQUE, its applications, and algorithms for it, see
[16].
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Recently it has been shown that even calculating!(G) to within a given constant
factor is NP-hard [1]. In fact, the main result of [1] gives a fixed � > 0 such that
if there is a polynomial-time algorithm A which gives !(G)=A(G) � n� for all
G of sufficient size n, then NP = P. (Here A(G) denotes the clique size returned
by algorithm A.) Nevertheless, there are simple heuristics which come to within a
factor of 2 of optimal for “most” graphs, in the sense of the uniform distribution
u(n). This distribution is defined on n-vertex undirected graphs, by letting each
edge (i; j), (1 � i < j � n), exist independently at random with probability
1/2. When the probability is p instead of 1/2, we denote the distribution as up(n)
instead. For example, Theorem 8 of R. Karp [11] implies that for any � > 0 and
sufficiently large n, the heuristic we call SD-; gives an expected performance ratio
E[!(G)=SD � ;(G) : up(n)] which is less than 2 + �.

However, it is felt in many quarters that the uniform distribution does not accu-
rately reflect the nature of instances which come up in practice. M. Li and P.
Vitanyi [12] argue that when the actual distribution of instances is unknown, it is
most appropriate to suppose that they come from the non-computable Solomonoff–
Levin or universal distribution m(x). One reason is that every computable distri-
bution is majorized by a constant multiple of m(x). Another reason related to
Occam’s Razor is that the objects occurring most often in nature or in practice
have short descriptions. A description of x is a program P and an argument y such
that P (y) = x; the description is short if the total bit length of Py is appreciably
less than the bit length jxj of x. The shorter descriptions x has, the more weight is
given to m(x). By contrast, uniform distributions favor instance strings x which
are incompressible; i.e. whose shortest descriptions are essentially “PRINT x”. Li
and Vitanyi [13] show that with respect to m(x), the average-case running time
of any algorithm whatsoever has the same order as its worst-case running time.
In Section 2 we obtain the same result with performance ratios by approximation
algorithms in place of running time.

The main purpose of our work is to test whether certain algorithms perform
noticeably worse under distributions weighted toward compressible inputs. We also
wish to ascertain which algorithms perform poorly on such distributions and which
perform well. Section 3 describes our efficient approximation q(x) to m(x). Section
4 describes the algorithms we tested, ranging from simple to sophisticated neural
network heuristics. All these algorithms were tested extensively on random graphs
in [9], and several of them on a variety of graphs with different kinds of structures
in [10], in which paper extensive comparisons were made with other algorithms.
Section 5 describes the experimental methodology, which includes a description
of the test graphs, a discussion of the criterion for evaluating performance, and a
description of the parameter values of certain parametrized algorithms. In Section
6 we present the experimental results and their analysis.

The main contributions of this paper are:

– Theorem 1, extending Li and Vitanyi’s result to approximation performance
ratio.
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– A method for testing algorithms under an efficient approximation to the uni-
versal distribution. To our knowledge, this is the first concerted effort at
testing under such non-uniform distributions. The resulting generator, q(x),
provides a reasonably efficient means of generating a diverse set of application-
independent graphs, amongst which lie some quite hard graphs for MAX-
CLIQUE – harder, as experiments and conceptual arguments indicate, than
random graphs.

– Experimental results (Section 6) which show that, while all nine heuristics
performed roughly equally-well under u(n), three of the simpler ones per-
formed markedly poorer than the other six under q(x). For example, SD-;, the
simplest heuristic, retrieved on average a clique size within a factor of 1.35 of
the one retrieved by the best heuristic, on graphs drawn from u(n) (see Table
4). By contrast, SD-; was on average poorer by a factor of 2.42 and 7.56 than
the best heuristic on graphs drawn from q(100) and q(400) respectively (see
Table 4).

– Experimental results (Section 6) which reveal some interesting characteristics
of certain individual algorithms. For example, a simple variant of SD-;, only a
very little more sophisticated than SD-;, ended up performing much better on
q(x). One of the continuous neural network methods, MFA, which has been
claimed in the neural network literature to work well in practice, did indeed
work very well on q(x). The other continuous method, CHD, was discernibly
poorer than MFA but significantly better than SD-; and the other two simplest
algorithms, on q(x).

2. Theoretical Work

Consider any maximization problem �, on a graph, which employs a quality mea-
sure q : Gn ! Z+. For any algorithm A for problem �, define

wc�(A;m) = max
x2Gn

�opt(x)

A(x)

where m =
�n

2

�
, x 2 f0; 1gm is the usual bitstring representation of a graph in Gn,

�opt(x) is the quality of the optimum solution in x and A(x) is the quality of the
solution in x found by algorithm A.

Clearly wc�(A;m) is recursive.
Define the average-case performance ratio of algorithm A with respect to the

m(x) distribution on inputs of length m as

acm
� (A;m) =

P
l(x)=m m(x)�opt(x)=A(x)P

l(x)=m m(x)

where l(x) denotes the length of x.
Let M denote the set f�2

2

�
;
�3

2

�
; . . .g.
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THEOREM 1. For any algorithm A for any problem � as defined above, and for
any m 2M,

acm
� (A;m) = �(wc�(A;m))

Proof. Following [13], define a probability distribution P (x) that assigns high
probability to some inputs for which the worst-case complexity is reached, and
zero probability in other cases. Specifically,

P (x) :=

8>><
>>:

0 if l(x) 62 MP
l(x)=m m(x) if l(x) 2M and x is the lexicographically

first graph in Gn with �opt(x)=A(x) = wc�(A;m)
0 if l(x) 2M and x is not as described above

The distribution P is defined on S = Z+ [ fug where u is a symbol not in Z+

used to cover the remaining probability uncovered by Z+ [13]. We set

P (u) := m(u) +
X

x:l(x)62M

m(x)

which makes
X
x2S

P (x) =
X
x2S

m(x) = 1:

The distribution P (x) is enumerable since m(x) is enumerable and because the
above construction preserves this property.

Therefore there is a constant cP > 0 such that for all x 2 S : cP�m(x) � P (x)
[13]. Hence

acm
� (A;m) =

P
l(x)=m m(x)�opt(x)=A(x)P

l(x)=m m(x)

� 1
cP

P
l(x)=m P (x)�opt(x)=A(x)P

l(x)=m m(x)

=
1
cP

P
l(x)=m m(x)wc�(A;m)P

l(x)=m m(x)

=
wc�(A;m)

cP
:

The proof is completed because, trivially,

wc�(A;m) � acm
� (A;m):

Theorem 1, while a rigorous result, has two limitations as far as the experimental
part of this paper is concerned. First, the proof hinges on the distribution m(x),
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which is not computable, in particular, as Li and Vitanyi explain, on the unique
dominance property of m(x). Second, the constant cP used in the proof is quite large
[13], which in turn implies that the proof holds only for large problem instances.

This raises the question: while the current proof of Theorem 1 does not go
through when the hypotheses are changed as noted above, does the effect captured
by Theorem 1 still persist? One way to address this question is via experimentation.
This is the approach taken in the remainder of this paper. Here, we present Li and
Vitanyi’s intuitive explanation of the effect that gives rise to Theorem 1 [13],
adapting it to performance ratio.

Let algorithm A have average-case and worst-case performance ratios of
�(f(n)) and �(g(n)) respectively, where f(n) = o(g(n)). This implies that
only on a sparse subset of inputs of length n does A achieve its worst-case
performance ratio of �(g(n)). Owing to its sparseness, given n, every such
input is compressible.

This conclusion, that “all worst-case inputs are compressible” coupled with the
fact that the set of compressible inputs is, like the set of worst-case inputs, a sparse
subset of the set of all inputs of lengthn offers hope that if one samples sufficiently-
many compressible inputs (which is not a lot), one will find some worst-case ones.
It is this hope that drives the experimentation in the remainder of this paper.

3. The q(x) Sampler

We use a functional programming notation L due to Y. Gurevich and S. Shelah [5]
which captures all programs which run in nearly linear time, viz. time bounded by
c � n(logn)k for some fixed c; k > 0. We wrote in the C programming language
a program D which decodes any binary string z into an L-program P and an
argument y. Details of L and D are given below. We also wrote in C a program
U which takes P , y, and the target graph size n as arguments, and simulates P on
input y. If x := P (y) does not have length n or greater, the output is discarded.
Else we define U(z; n) = U(P; y; n) to be the graph Gx constructed by taking the
first n bits of x.

With reference to our specific decoder D and simulator U , we define, for all n
and x 2 f0; 1gn:

wq(x) :=
X

2�jzj : jzj � jxj+ 1; U(z; jxj) = x;

Wq(n) :=
X

wq(x) : x 2 f0; 1gn;
q(x) := wq(x)=Wq(n): (1)

The distribution q is computable and samplable by generating strings z of length
� n + 1 uniformly at random. Except in relatively rare cases, the sampling and
decoding of each z takes nearly linear time as a function of n.

In the series of tests reported in this paper we did not do this, but rather
restricted our sampling to strings z of length approximately

p
n. Limitations of
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time and hardware led us to avoid working with seed strings of length close to n,
as sampling according to q would require. We felt that if the phenomenon raised
above were true, we could detect it more readily by limiting the sample to graphs
known to have relatively high weight under q, and comparing that to samples
drawn from the uniform distribution. Our choice of quadratic compression was
partly motivated by the hard-to-approximate graphs in [4; 1]. These graphs are
described by a fixed oracle for an NP-complete language, and an instance x of
some length m. The graph GM;x has mO(1) vertices which represent accepting
transcripts of the protocol (see [4]), two of which are joined by an edge iff the
oracle answers in the respective transcripts do not contradict each other. It is an
open question whether the “O(1)” can be reduced to nearly-linear; even if so, the
bit-size ofGM;x is still bounded below by 1

2m
2 (with judicious padding just in case

M rejects x).
The decoding strategy we used was to regard z as l � y � P 0, where l is a self-

delimiting description of the length of the argument y and P 0 includes the bits for
P as well its self-delimiting description (number of functions in P ; number of bits
for each of their parameters). The advantage of this decoding strategy is that y and
P scale well with length of z. The seeds were recorded to make the experiments
repeatable. See the Appendix for implementation details.

The following description of the eight basic string functions from [5] assumes
that the shown occurrences of substrings meeting the ‘if’ conditions are leftmost in
x, and for R2, R3, and E, that the “parameter strings” u; v; . . . ; all have the same
length.

R0u;y(x) : If x = ur then yr, else x.

R1u;y(x) : If x = tur then tyr, else x.

R2u;v;y;z(x) : If x = sutvr then sytzr, else x.

R3u;v;w;y;z(x) : If x = sut1vt2wr with jt1j = jt2j then sut1yt2zr, else x.

Eu;v(x) : Simultaneously replace every 0 in x with u and every 1 with v.

Cu;v(x) : If x = Eu;v(y) for some y then y, else x.

Au(x) : Add a tail of jxj log jxj-many copies of u to x.

Du(x) : Delete the maximal tail of u’s in x.

There are two constructors: functional composition, and “iterated replacements”
of the form (R)�(x), where R is a composition of any number of R0 . . .R3 func-
tions, and R is applied jxj-many times. The main theorem of [5] states that every
function computed by a random access machine in nearly linear time (NLT) is
computed by some program in L, and vice-versa. Thus L is universal for NLT
computation. This justifies regarding q as an efficiently computable analog of m.
However, it should be pointed out that whereas the parameter strings u; v; . . . ;
are fixed in individual L-programs, the definition of q effectively quantifies over
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them. This allows for quadratic and greater expansions. Except for cases where an
occurrence of Cu;v(�) or Du(�) causes a large contraction of an expanded string,
the time remains nearly linear in the length of the output.

The main practical reason for usingL is its simplicity and ease of implementabil-
ity. Also, while the expansion operations E and A always apply, the contraction
operations C and D most often have no effect. Hence L has a bias toward expan-
sion which is not unnatural, and which reduces the sampling time. Indeed, we were
surprised to find that no fewer than one out of every six randomly chosen seeds
expanded out to a large enough graph.

4. The Neural Network Algorithms

All neural network algorithms evaluated in this paper are based on the Hopfield
model [7; 8], and are described in detail in [9]. Here we describe them only briefly,
without explaining their neural network implementation in much detail. It is worth
noting that all these algorithms arise as manifestations of essentially a single meta-
algorithm: one that minimizes the usual energy function in the Hopfield model [7;
8].

4.1. DISCRETE ALGORITHMS

Steepest Descent. Steepest Descent (SD) is a discrete serial-update neural network
heuristic that minimizes energy in greedy fashion. In each time step, the unit to
switch decreases energy by the maximum amount. We use the notation SD(V0) to
denote the Steepest Descent starts initially from some subset V0 � V of vertices.
SD iteratively transforms V0 into a maximal cliqueC , terminating efficiently within
2n iterations [9]. Let Vi denote the vertex set in iteration i and assume that it is not
a maximal clique. SD emulates the following heuristic in iteration i:

If Vi is not a clique then
remove a minimum degree vertex in induced subgraph G[Vi] from Vi

else if Vi is a clique then
add to Vi a vertex in V nVi that is adjacent to every vertex in Vi.

Ties are broken lexicographically.

�-annealing.�-annealing is another discrete serial-update neural network heuristic,
which works by carrying out annealing while minimizing energy. More precisely,
a certain parameter of the network, called �, is varied while the network minimizes
energy by steepest descent. This is analogous to varying the temperature T in
simulated annealing. Like T in simulated annealing, increasing the parameter �
has the effect of progressively tightening the constraints until, eventually, the
solution becomes feasible (a clique in our case). We omit the precise description
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of �-annealing here, for which the reader is referred to [9]. An intuitive description
is as follows.
1. Start with small � and with the initial state V0 := V .
2. Run SD(V0) with this value of � to transform V0 into U .
3. Increase �, set V0 := U , and go to step 2.

The algorithm is terminated when � becomes sufficiently large. It turns out
that when � is small, the set U retrieved in step 2 is not required to be a clique;
however as � is increased, certain constraints get ever tighter, ultimately forcing
U to be a clique. In other words, like simulated annealing, this algorithm starts
with loose constraints – allowing an unbiased exploration of the search space –
and progressively tightens them until the final solution U forms a clique. A precise
characterization of the behavior of this algorithm is in [9].

Stochastic Steepest Descent. Stochastic Steepest Descent (SSD) is a randomized
variant of SD. The deterministic moves of SD are replaced by energy-minimizing
moves that favor the steepest direction, but probabilistically. More precisely,

The unit to switch is picked with probability proportional to the amount of
energy its switch would decrease. (The probability is zero if the switch would
keep the energy same or increase it.)

The algorithm is motivated by the desire to randomize the choice of unit to
switch, which allows one to use repeated runs of the algorithm to boost the size of
the clique found, while not totally relinquishing the greedy heuristic emulated by
SD, which often works well (see Tables 1 and 2, and [9]).

Let SSD(V0; i) denote i runs of SSD on a given graph, with V0 as the initial
state (vertex set) in each run. (Note that the initial state is the same in each run.)
The largest clique found in a run is the output of the algorithm. One run of SSD
terminates within 2n unit-switches (iterations) [9], which keeps one run as efficient
as SD.

4.2. CONTINUOUS ALGORITHMS

The description of the continuous algorithms assumes familiarity with the contin-
uous Hopfield model [8].

Continuous Hopfield Dynamics. This algorithm, called the continuous Hopfield
dynamics (CHD) [8; 6], is described by a system ofn coupled nonlinear differential
equations, presented here in discretized form:

S(t+ 1) := S(t) + (�S(t) + �g�(WS(t) + I)): (2)

Here Si 2 [0; 1] is the state of the ith neuron, Ii the external bias of the ith

neuron, W the n � n symmetric weight matrix, g�(x) = 1
1+e��x a sigmoid with

gain �, �g(�x) notational shorthand for (g(xi)), and  the Euler step size. The
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Table 1. 100-vertex graphs sampled from q(x). The column MAX gives the size of the maximum clique when known, computed
using dfmax, an exact semi-exhaustive search algorithm.

Graph SD(;) SD(V ) �-A SSD(;, 1) SSD(V , 1) SSD(;, n) SSD(V , n) CHD MFA MAX

G1 5 8 8 7 6 9 11 10 11 11
G2 10 29 29 29 29 29 29 29 28 29
G3 8 21 21 11 14 21 21 16 21 21
G4 4 9 9 4 7 8 9 4 8 9
G5 9 8 8 5 10 10 10 7 10 10
G6 17 40 40 36 30 40 40 40 40 40
G7 7 12 13 7 6 11 13 9 13 13
G8 5 6 6 5 5 6 6 6 5 6
G9 4 3 3 4 2 4 4 4 3 4
G10 5 10 10 8 5 10 10 4 8 10
G11 7 22 22 11 16 21 22 16 22 22
G12 3 27 27 6 8 27 26 27 27 27
G13 8 13 13 9 9 14 14 7 13 15
G14 5 7 7 4 4 7 8 4 7 8
G15 19 26 26 21 17 27 26 22 27 27
G16 4 3 3 4 2 4 4 4 3 4
G17 6 9 9 7 8 10 11 8 10 11
G18 15 31 31 4 23 31 31 31 31 31
G19 6 9 8 7 5 8 9 7 8 9
G20 15 31 31 31 31 31 31 31 30 31
G21 4 5 5 4 3 5 5 4 4 5
G22 9 26 26 13 16 26 26 21 26 26
G23 5 8 9 4 8 11 10 9 10 11
G24 5 9 9 8 7 10 10 8 9 10
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Table 1. Continued

Graph SD(;) SD(V ) �-A SSD(;, 1) SSD(V , 1) SSD(;, n) SSD(V , n) CHD MFA MAX

G25 5 4 4 4 4 4 5 4 5 5
G26 19 42 42 32 40 42 42 36 41 42
G27 100 100 100 100 100 100 100 100 100 100
G28 5 7 9 6 6 8 8 7 7 9
G29 16 21 21 11 16 23 23 13 21 23
G30 5 9 9 11 8 12 12 9 10 13
G31 3 3 3 2 3 4 3 3 2 4
G32 15 39 39 18 21 39 39 38 38 39
G33 60 60 60 38 57 65 60 60 60 60
G34 8 8 8 6 4 13 13 5 7 13
G35 5 35 35 25 35 35 35 35 35 35
G36 8 10 11 8 10 11 11 7 11 12
G37 3 2 2 2 2 3 3 2 2 3
G38 8 13 13 7 9 13 13 7 13 13
G39 4 17 17 10 6 16 17 17 17 17
G40 8 29 29 27 11 27 29 29 29 29
G41 5 11 11 8 4 13 12 8 11 13
G42 4 5 5 5 3 5 5 5 4 5
G43 7 21 21 8 11 20 20 18 21 21
G44 2 26 26 26 24 26 26 26 25 26
G45 12 37 37 21 32 37 37 37 36 37
G46 3 6 6 2 3 5 6 5 6 6
G47 6 12 13 7 10 13 14 9 14 14
G48 4 6 6 4 6 7 7 5 6 7
G49 4 11 11 4 9 10 11 8 11 11
G50 6 10 10 7 8 12 13 10 13 13

Avgs. 10.20 18.20 18.42 12.96 14.26 18.76 19.00 16.62 18.38 19.20
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Table 2. 400-vertex graphs sampled from q(x). The column labeled MAX contains the maximum clique size, computed as
described in Table 1. A � in the MAX column indicates the maximum clique was not found for that graph – either because
dfmax did not (or it was anticipated it would not) terminate in reasonable time.

Graph SD(;) SD(V ) �-A SSD(;, 1) SSD(V , 1) SSD(;, n) SSD(V , n) CHD MFA MAX

G1 6 16 16 9 6 12 15 16 15 17
G2 12 90 90 16 12 90 90 90 90 �90
G3 12 36 39 10 27 34 40 39 41 41
G4 16 166 166 130 144 163 166 166 166 �166
G5 20 130 130 100 40 130 130 130 130 �130
G6 10 31 33 20 22 27 34 26 29 38
G7 8 26 26 19 17 27 26 23 27 30
G8 4 43 43 11 21 43 43 41 43 �43
G9 4 23 23 9 5 22 23 22 23 23
G10 8 25 30 9 13 29 30 20 23 30
G11 11 74 74 28 35 72 74 74 74 �74
G12 3 68 68 47 23 68 68 67 65 �68
G13 8 35 35 17 6 32 34 34 34 35
G14 10 25 25 14 11 25 25 15 24 26
G15 11 93 93 85 65 93 93 63 62 �93
G16 21 51 51 35 55 65 65 65 64 �65
G17 47 115 115 64 115 114 115 83 114 �115
G18 41 141 141 92 100 139 138 122 141 �141
G19 4 11 11 5 10 13 14 10 14 15
G20 7 27 27 11 11 27 22 16 28 29
G21 12 80 82 24 39 82 82 61 80 �82
G22 15 40 58 39 52 76 76 76 57 �76
G23 6 59 59 15 29 53 59 56 59 �59
G24 2 132 132 75 131 132 132 132 132 �132
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Table 2. Continued

Graph SD(;) SD(V ) �-A SSD(;, 1) SSD(V , 1) SSD(;, n) SSD(V , n) CHD MFA MAX

G25 4 35 35 7 7 34 35 34 33 35
G26 5 14 20 20 12 25 24 21 27 27
G27 6 18 18 9 8 14 15 8 16 18
G28 135 135 135 6 97 135 135 135 135 �135
G29 60 71 71 28 67 72 72 72 72 �72
G30 5 14 14 9 12 14 14 11 12 14
G31 192 226 226 222 223 225 226 205 225 �226
G32 3 125 125 111 105 125 125 124 123 �125
G33 11 13 13 12 10 13 13 13 13 13
G34 9 16 17 10 9 16 16 16 17 19
G35 8 25 24 11 27 25 27 23 25 29
G36 6 27 27 22 10 29 27 12 26 29
G37 25 56 56 56 28 56 56 20 57 �57
G38 4 22 22 5 10 21 21 20 22 22
G39 166 193 188 197 177 200 203 174 194 �203
G40 9 28 28 51 10 51 51 28 27 51
G41 11 92 93 62 78 93 93 80 93 �93
G42 17 56 42 30 20 55 56 40 43 56
G43 13 17 29 17 19 33 30 17 29 34
G44 19 57 57 43 41 59 58 46 58 �59
G45 6 52 62 17 30 62 62 58 62 �62
G46 8 50 70 40 32 69 69 43 69 �70
G47 4 7 7 7 3 7 7 7 6 7
G48 5 58 58 6 12 58 58 58 58 �58
G49 2 59 59 42 29 59 59 59 58 �59
G50 14 58 76 56 54 74 75 58 77 �77

Avgs. 20.90 61.22 62.78 39.6 42.38 63.84 64.42 56.58 62.22 �65.36
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continuous-time version of (2) minimizes an energy function during its evolution
[8], into which the MAX-CLIQUE problem can be encoded [9]. With sufficiently
large � and sufficiently small , if (2) is started from any initial state S(0) 2 [0; 1]n

and iterated sufficiently-many times, it provably terminates at a fixed point S from
which a maximal clique of the encoded graph can be recovered [9].

For a discussion of the significance of CHD from the point of view of neural
implementation and optimization applications, see [8; 6; 9]. CHD is especially
interesting because it may be viewed as the essential special case of the algorithm
presented next – a continuous optimization method developed only recently, but
one that is already beginning to make its mark on optimization as it occurs in
practice.

Mean Field Annealing. The second continuous heuristic, called Mean Field
Annealing (MFA) [2; 17], may be described as a generalization of CHD in which
the sigmoidal gain � is varied during the evolution of (2). This is done by employ-
ing an annealing schedule, a sequence f�i; �ig of k elements, where �i is the value
of the sigmoidal gain and �i the number of times (2) is to be iterated with the
sigmoidal gain set at �i. Usually �i is a monotonically increasing function of i.
The detailed algorithm is as follows.

S := S(0)

for i := 1 to k do

for j := 1 to �i do

S := S + (�S + �g�i(WS + I)

With sufficiently small  and sufficiently large �i, S converges to a fixed
point at each value of i [8; 6]. Additionally, with sufficiently large k, and with �i
growing sufficiently slowly with i, MFA is known to deterministically approximate
simulated annealing during its evolution [2; 6], while being more efficient.

5. Experimental Methodology

All experiments on the neural network algorithms and their evaluation on u(n) and
q(x) were performed on a SUN SparcStation I.

Details of the Sampling Process. Experiments were performed on 100-vertex
graphs and on 400-vertex graphs. The bitstrings of the 100-vertex graphs had
length 4950, and those of the 400-vertex graphs had length 79,800. For n = 100
and n = 400, three sets of fifty n-vertex graphs were generated. One set was drawn
from the uniform distribution with p = 0:5, and one with p = 0:9. All seed strings
were generated using the standard UNIX pseudorandom number generator, and
recorded to make the experiments repeatable.

The third set was generated using seed strings of lengths 65..85 for the fifty
100-vertex graphs and eleven of the 400-vertex graphs, and 270..285 for thirty-
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nine of the 400-vertex graphs. When we compiled the 100-vertex set we found
that eleven seeds expanded to strings of length greater than 79,800. Rather than
truncate them to length 4950, we decided to discard them from the 100-vertex
sample but include them into the 400-vertex sample. For hardware reasons we also
set a limit of 700,000 on the number of bits produced at any stage of the decoding,
and discarded those seeds which broke it from the 400-vertex sample. We believe
that these practical decisions did not bias our results in any significant way. It took
about 12 hours of computing time to assemble this set.

The long strings of 0s and 1s were truncated to length 4950 or 79,800 and formed
into an adjacency matrix for the graph in the order (1,2), (1,3), (2,3), (1,4),... of
edges. Over three-fourths of these strings were generated by L-programs whose
final instruction was “Add a tail of jxj-many copies of u to x”, where u was fairly
long, and so ended with many repetitions of u. We do not have an intuitive idea of
the extent to which this yielded repeated patterns in the graph.

Nine heuristics were tested on each of the six sets, giving 2700 runs in all. For
each 400-vertex graph, it took about two hours to run all nine. The MFA heuristic
was by far the slowest of the lot.

Structural Comparisons of the Graphs. It is instructive to compare the q(n)
graphs versus the u(n) graphs on certain structural properties. The three properties
we adopted for comparison are: m(G), the number of edges in a graph G, (� �
�)(G) the difference between the maximum degree and the minimum degree in a
graph G, and !(G), the order of a maximum clique in a graph G. The numbers are
presented below.

Property q(100) q(400) u0:5(100) u0:5(400)
min, avg, max min, avg, max min, avg, max min, avg, max

m 343,2313.1,4950 3958,38189.9,68491 2402,2477.4,2553 39528,39867.4,40161
�� � 0,39.8,96 24,186.1,389 20,24.7,30 50,59.34,73
! 3,19,100 7,–,�226 9�,9.99�,10� 12�,12.99�,13�

Each group of three columns is associated with a particular class of graphs. In
any particular row, the three values associated with a particular class of graphs are
the minimum, the maximum, and the average values of the property associated
with that row, taken over the fifty graphs of that class. The �-ed values are very
sharp estimates taken from random graph theory.

From the above numbers we see that the q(n) graphs spanned a wide range of
densities – from the very sparse to the very dense – while their average density was
very close to that of a u0:5(n) graph. The difference between the maximum degree
and the minimum degree of a q(n) graph was also spread over a wide range, with
a large average value. (Notice that this says two things: (i) in most graphs, there
was a large gap between maximum and minimum vertex degree and (ii) this gap
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itself had a large variance.) Finally, the maximum clique sizes of q(n) graphs were
also in a wide range.

In striking contrast, for graphs drawn from u0:5(n) all three numbers – m: the
number of edges, � � �: the maximum degree minus the minimum degree, and
!: the order of the maximum clique – were confined in a very narrow range. In
addition, the average value of � � � was itself very small, indicating that most
degrees are bunched together. This gives some indication of the diversity of the
q(n) graphs in comparison with those drawn from u0:5(n).

Sample Sizes. Each set of test graphs contained fifty graphs. It is reasonable to ask
if this sample size is adequate. For graphs drawn from up(n), several arguments
lead to the conclusion that a sample size of fifty graphs is more than adequate for
our purposes. First, the expected size of the maximum clique in a graph drawn
from up(n) has a sharp threshold [15] and the range of sizes of maximal cliques
in such graphs is also quite narrow. Thus, any maximal-clique finding algorithm,
for example most of the ones in the current paper, is guaranteed to find a clique
in a narrow range. This argument is reinforced by experimental results reported in
[9], which give the distribution of clique sizes found in fifty graphs drawn from
up(400), p = 0:5, 0.9, which turns out to have a very small variance.

For graphs drawn from q(x), however, it was not clear a priori when an adequate
sample size should be. We decided to start with a sample size of fifty. On this sample
size, the results reported in Tables 1 and 2 (see Section 6 for their presentation and
analysis) displayed certain trends so clearly and consistently that we felt confident
that our observations were sound and the trends would remain similar on larger
sample sizes.

Evaluating Performance. The main hurdle in analyzing the results is that there
is no easy way of calculating the size of the largest clique in a graph. We could
have used some exponential-time algorithm to find the exact answer, but this would
have been quite time-consuming on the 2700 runs. Therefore, instead of comparing
the absolute performance of these algorithms on u(n) versus those on q(x), we
decided to compare their relative performances, in particular how well or poorly
certain algorithms performed relative to others, on u(n) versus q(x).

Parameter Settings of the Continuous Algorithms. The continuous algorithms
– CHD and MFA – use certain free parameters whose values needed to be set. The
values that we used are described below to make the experiments independently
repeatable. One needs to refer to [9] in order to understand some of the parameters.

CHD was operated at � = �10n, � = 1,  = 0:1, Ii = j�j=4 for all i, and
with the number of iterations of (2) fixed in advance to n. The initial state to CHD
was set to S(0) := (0:5 + �)n, where � was a random value in [�0:05; 0:05]. The
settings are the same as in [9], and are motivated there.
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MFA was operated with the same settings for �; �; ; I , and the initial state S(0)
as was CHD, and with the following geometric annealing schedule:

Ti = ai�1Ti�1;T1 =
2
6
nj�j

where ai = 0:9 for i � 4 and ai = 0:5 for i > 4. Here Ti = 1=�i. The settings
are essentially the same as in [9], and are motivated there. Experimental results in
[9] also reveal that CHD and MFA continue to work well on the graphs tested in
[9], on parameter settings in a reasonably large neighborhood of those described
above.

6. Experimental Results

Tables 1 and 2 give the size of the clique retrieved by each of the nine algorithms,
on fifty 100-vertex and fifty 400-vertex graphs sampled from q(x) respectively.

SD(;) is the steepest descent algorithm whose initial state is the empty set. It
emulates the naive heuristic:

Start from the empty set and extend it, by adding, in each step, one suitable
vertex selected lexicographically, until it forms a maximal clique.

SSD(;; 1) is a randomized version of SD(;) in which the vertex to be added is
selected randomly, from the feasible choices, instead of in lexicographic fashion.
SD(V ) is the steepest descent algorithm whose initial state is the entire vertex set
V . It turns out that SD(V ) emulates the following algorithm [9]:

S := V

while S is not a clique do
Pick a vertex v 2 S with minimum degree in S
Delete v from S

endwhile
while S is not a maximal clique do

Pick smallest-numbered vertex v 62 S adjacent to every vertex in S
Add v to S

endwhile

SSD(V; 1) is a randomized version of SD(V ) in which the vertex to be deleted in an
iteration of the first loop is picked with probability proportional to S� degreeS(v)
(the smaller the degree, the higher the probability), and the vertex to be added
in an iteration of the second loop is picked at random from the feasible choices.
SSD(;; n) and SSD(V; n) are multiple restart versions of SSD(;; 1) and SSD(V; 1)
respectively – the largest clique found in the n runs is output.

From Tables 1 and 2, the following observations can be made:
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– SD(;) works the poorest. SSD(;; 1) and SSD(V; 1) work moderately better
but remain significantly poorer than the best algorithms. Thus, randomization
alone helps but not as much as one might expect.

– SD(V) works much better than SD(;) and nearly as well as the best algorithms.
Thus replacing the initial state of SD(;) by V , which makes the SD algorithm
greedier, improves the performance much more dramatically than by random-
izing SD(;) alone. Randomizing SD(V), to get SSD(V,1), in fact worsens the
performance significantly.

– The �-annealing algorithm consistently works just slightly better than SD(V).
– The multiple restart algorithms – SSD(;; n) and SSD(V; n) – work the best,

with SSD(V; n) working just very slightly better. This shows that the real
benefit of randomization is that it allows multiple restarts, which boosts per-
formance immensely.

– The continuous algorithm CHD works moderately poorer than the continuous
algorithm MFA, which was anticipated, but also works discernibly poorer than
the discrete algorithm SD(V ), which was not anticipated.

These observations hold for both Tables 1 and 2 – if anything, the effects are
more pronounced in Table 2 than in Table 1.

From these results we may cluster the algorithms into four groups, using the
size of the clique found as the measure. In order of decreasing performance, the
clusters are:
1. SSD(V; n), SSD(;; n), �-annealing, MFA, and SD(V ).
2. CHD.
3. SSD(V; 1) and SSD(;; 1).
4. SD(;).

6.1. COMPUTING THE MAXIMUM CLIQUE SIZE

To compute exact performance ratios of our neural network algorithms on the
q(x) graphs, we ran an exact semi-exhaustive search program, called dfmax, to
find a maximum clique on all fifty graphs from q(100), and twenty three graphs
from q(400). The program dfmax is a C version of the code described in [3], and
was implemented by D.S. Johnson and used earlier as a benchmark in the Second
DIMACS Challenge.

In addition to allowing computation of exact performance ratios, these experi-
ments also provided an unanticipated insight. In particular, they revealed that dfmax
slowed down tremendously on several of the q(400) graphs. We ran dfmax on only
23 graphs – the ones with the smallest cliques – on which it found a maximum
clique quite quickly. We tried dfmax on several of the remaining 27 graphs with
larger cliques. In all cases we tried, dfmax ran for several days – in some cases for
two weeks – without finding a maximum clique. We were forced to terminate these
runs, and did not even attempt to evaluate dfmax on the graphs we hadn’t tried on
(the ones with even larger cliques).
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For comparison, we ran dfmax on random graphs, on which it was able to find a
maximum clique in each of fifty graphs drawn from u0:5(400) in time ranging from
43.9 to 53 seconds. These findings reinforce the indication from the performance
ratio results (see Tables 1 and 2) that graphs drawn from q(n) are harder than those
drawn from u(n), and that, as n increases, the q(n) graphs get harder more quickly
than do the u(n) ones.

It is to be noted that when we ran dfmax on a graph from u0:9(400) it ran for
fifteen hours without giving an answer, at which point the run was terminated.
Although this does seem to indicate that dense random graphs are harder for dfmax
than uniform random graphs, it does not give any indication of whether the u(0:9)
graphs are as hard as the q(400) ones for dfmax.

It is reasonable to suspect that, because dfmax is a semi-exhaustive search
algorithm, the reason it ran efficiently on the u0:5(400) graphs is that they all had
very small maximum cliques, while the reason that it ran so poorly on the q(400)
graphs with large cliques (and also on the one dense random graph) is precisely
because they have large cliques. That graphs with large maximum cliques arise
frequently in q(x) is to be expected (they almost never arise in u0:5(x)) and if
this causes problems for dfmax, then so be it. It is worth noting that the relative
performance ratio of SD(;) to the best heuristic was 10.93 and 7.57, averaged over
these twenty seven and the entire set of fifty q(400) graphs respectively. Thus,
these twenty seven graphs not only seem hard for dfmax but are also harder on
average for SD(;) than the remaining ones in q(400).

Finally, these dfmax experiments revealed the practical difficulty of conducting
experiments on the q(n) graphs for all but small n.

6.2. THE q(n) VERSUS u0:5(n) COMPARISONS

Table 3 gives the clique sizes found by these nine algorithms on random graphs,
i.e. graphs drawn from up(n). The relative rankings of the algorithms in Tables
1, 2, and 3 are mostly the same, though there is one notable exception, explained
later in this paragraph. The performance differentials between these algorithms are
however far wider on graphs drawn from q(x) than on graphs drawn from up(n).
On graphs drawn from u1=2(n), the clique sizes obtained by all nine algorithms are
in a small range. SD(;) remains the poorest working algorithm, but only marginal-
ly so. On graphs drawn from u0:9(n), the range of clique sizes gets larger and so
do the performance differentials, although most of the relative rankings remain
unchanged. The one notable exception is the MFA algorithm which performs sig-
nificantly better than all the others. Although MFA worked very slightly poorer
than the multiple restart algorithms on graphs drawn from q(x) it works significant-
ly better on graphs drawn from u0:9(n). Another interesting feature of the graphs
drawn from u1=2(n) versus those drawn from q(x) revealed by the algorithms is
that, whereas both types of graphs have roughly the same density, the algorithms,
on average, retrieve much larger cliques on graphs drawn from q(x) than on graphs
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Table 3. Average performance on p-random graphs. This table is excerpted from Table I in [?].

n p SD(;) SD(V ) �-A SSD(;; 1) SSD(V; 1) SSD(;; n) SSD(V; n) CHD MFA

100 0.5 6.34 7.98 8.06 6.48 6.42 8.36 8.60 7.44 8.50
100 0.9 23.86 28.16 28.34 23.40 24.82 27.60 28.76 27.92 30.02
400 0.5 8.30 9.88 10.34 8.44 8.24 10.80 11.04 9.16 10.36
400 0.9 36.12 43.80 44.58 35.84 36.82 41.86 43.20 43.24 49.94

Table 4. Average performance ratio SSD(V; n)(G)/A(G) on all graphs. The numbers for the q graphs are
obtained by averaging over the performance ratios, not by taking the performance ratio of the average.

Source SD(;) SD(V ) �-A SSD(;; 1) SSD(V; 1) SSD(;; 1) SSD(V; n) CHD MFA

q(100) 2.42 1.10 1.09 1.79 1.60 1.03 — 1.31 1.10

G:5(100) 1.35 1.08 1.07 1.37 1.32 1.02 — 1.15 1.01

G:9(100) 1.20 1.02 1.01 1.23 1.15 1.04 — 1.03 0.96
q(400) 7.56 1.09 1.03 2.64 2.19 1.02 — 1.24 1.05

G:5(400) 1.33 1.12 1.07 1.31 1.33 1.02 — 1.21 1.02

G:9(400) 1.19 0.99 0.97 1.21 1.17 1.03 — 1.00 0.87

j
o
g
o
3
6
1
.
t
e
x
;
9
/
0
9
/
1
9
9
7
;
1
6
:
1
2
;
v
.
7
;
p
.
1
9



458 ARUN K. JAGOTA AND KENNETH W. REGAN

drawn from u1=2(n). Certainly this is not surprising as it is reasonable to expect
a correlation between the compressibility of graphs drawn from q(x) and the fact
that they contain large cliques.

The relative performance ratio of algorithm A to algorithm B on graph G is
defined as the clique size found by B divided by the clique size found by A. Table 4
gives the relative performance ratio of each algorithm to SSD(V; n), averaged over
graphs drawn from q(x) and over graphs drawn from up(n). SSD(V; n) is chosen
as the reference algorithm because it works best on graphs drawn from q(x). The
results reported in Table 4 are drawn from the earlier tables. The results viewed
in this fashion tend to support our earlier observations in more dramatic fashion.
For example, SD(;) has a poor relative performance ratio, 2.42, on graphs drawn
from q(100), which worsens markedly, to 7.56, on graphs drawn from q(400). By
contrast, SD(;) has much better relative performance ratios on graphs drawn from
up(100), p = 0:5, 0.9, which remain unchanged on graphs drawn from up(400),
p = 0:5, 0.9.

The absolute performance ratio of algorithm A on graph G is defined as the
maximum clique size in G divided by the clique size found by A. Table 5 gives
the exact, estimated, or lower-bounded absolute performance ratio. For the three
poorest algorithms, the Table 5 results reveal essentially no new information (the
poorest algorithms are revealed to be just slightly poorer than known from Table
4). However, for five of the remaining six algorithms they reveal good news – all
except CHD perform near-optimally on the q(n) graphs, with CHD not far behind.

7. Discussion

In this wrap-up section, we have chosen to adopt a rather unusual format – question
and answer – which we feel justified given the nature of this paper. These questions
originate from the anonymous reviewers.

Q1: This combination of theory and experiment might be misleading, favoring
an overestimation of the applicability of theoretical results on the universal
distribution to the practical problem of test instance generation.

This is a good point and our response to that takes the following form:

The experimental results neither confirm nor refute the validity of the precise
theoretical result in practical situations. They do give evidence of the follow-
ing, somewhat weaker, phenomenon associated with the theoretical result.

The theoretical result states that graphs drawn from m(n) draw out worst-
case performance ratio from any given algorithm. The experimental results
show that graphs drawn from q(n) – a heuristic analogue of m(n) – draw out
poorer performance ratio than on graphs drawn from u(n), from three of the
nine evaluated heuristic algorithms. Moreover, these three are the ones that
also happen to work poorest on graphs drawn from u(n) (although significantly
better on u(n) than on q(n)).
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Table 5. Average absolute performance ratios !(G)=A(G) on all graphs. The numbers reported in the rows for
q(100) and q(400) are exact ones and lower bounds respectively, computed using the MAX columns of Tables 1
and 2. The numbers reported in the rows for G:5(100), G:9(100), G:5(400), and G:9(400) are very sharp estimates,
found using the very sharp estimate on the maximum clique size in a random graph.

Source SD(;) SD(V ) �-A SSD(;; 1) SSD(V; 1) SSD(;; n) SSD(V; n) CHD MFA

q(100) 2.46 1.12 1.11 1.82 1.63 1.04 1.02 1.34 1.12

G:5(100) 1.58 1.25 1.24 1.54 1.56 1.20 1.16 1.34 1.18

G:9(100) 1.47 1.24 1.23 1.50 1.41 1.27 1.22 1.25 1.17
q(400) �7.68 �1.13 �1.07 �2.71 �2.26 �1.05 �1.04 �1.29 �1.09

G:5(400) 1.57 1.32 1.26 1.54 1.58 1.20 1.18 1.42 1.25

G:9(400) 1.52 1.26 1.23 1.53 1.49 1.31 1.27 1.27 1.10
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In a sense the results – that three particular algorithms perform poorly, while
the others don’t – are not unexpected. We claim that these three algorithms are
intrinsically weaker than the others. In support of this claim, we note that these
exact three algorithms perform poorest on u0:5(n). It was also shown in [9] that
on a certain distribution of graphs quite different from both up(n) and q(n), these
same three algorithms performed the poorest. Viewed this way, q(n) serves mainly
to amplify the differences amongst these algorithms. A plausible explanation for
why the others seem to remain robust on q(n) is that our choices ofn are too small.
It is reasonable to suspect that some of them might perform poorer on larger n. As
an extreme example, consider an exact algorithm. Obviously then, no matter how
large n is, it never performs poorly, in terms of solution-quality (though a solution
might not be forthcoming in reasonable time).

Q2: It is easy to see that it is possible to make the choices of language
L, decoder D and the simulator U in such a way that an arbitrary given
optimization heuristic is favored or disfavored by the resulting test instances.

This might be so, but this is not what we did. Our design of the q-sampler was
not influenced in any way by any optimization heuristic. Indeed, if one examines
the q-sampler algorithm, it is hard to imagine where a bias for or against any
particular algorithm could have crept in even by accident.

Q3: The approach seems to be less suited for comparing heuristics in an
objective way than e.g. the uniform distribution.

This is certainly the case. It is unfortunate that m(x) is not computable, let
alone tractable. One has no choice then, but to resort to a heuristic approximation,
which certainly introduces some degree of arbitrariness. The best one can do is
to minimize the arbitrariness exhibited by the heuristic approximation chosen. We
have tried to achieve this.

Consider arguing this another way. View the situation as a trade-off between
objectivity and relevance. At one extreme is the uniform distribution – efficiently
computable and objective – but, we argue, not very relevant (if one is to believe
that the real world is highly structured, i.e., compressible). At the other extreme
are distributions highly relevant to particular applications, but not objective. The
distribution q(x), we argue, is in the middle; it is more relevant than the uniform
distribution while being more objective than application-specific distributions.

Q4: Is q(x), at all, an “approximation” to m(x)?

In a rigorous sense, it seems to us, no. The terminology has been revised to
call it a heuristic analogue. We think it serves this role reasonably well, as argued
earlier.

Q5: The replacement of arbitrary programs by programs in nearly linear
time might essentially change the situation (note that this replacement also
obstructs the proof of Theorem 1).
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That it obstructs the proof is clear. That it essentially changes the situation is not
clear. In particular, as explained at the end of Section 2, a reasonable phenomenon
capturing the spirit of Theorem 1 is not ruled out if m is replaced by an efficient-
ly samplable analog, provided it is reasonably diverse. Indeed, the experimental
results may be viewed as a means of testing this question (given that testing under
m(x) is infeasible). The results give convincing (even if partial) answers in this
regard.

Q6: Dealing with the uniform distributions u0:5(x) and u0:9(x), in reality
pseudorandom numbers have been used. In the given investigation context,
this makes an essential difference, since a long sequence of pseudorandom
numbers can be considered as a set of highly compressible data, while real
random numbers are non-compressible by definition. Thus, what has been done
in fact is that one set of compressible problem instances has been compared
with another such set.

This is a good argument. We respond to different aspects of it individually.
First, using pseudorandom numbers instead of true random numbers does not

make an essential difference in this application. It is well known that the structural
properties of graphs drawn from u0:5(x) and u0:9(x) in practice via pseudorandom
numbers are in excellent agreement with those calculated from theory (which
assumes perfect random numbers). Our own experience is consistent with this fact.
The properties that our own experiments (and those of others in the published
literature) reveal to be in excellent agreement are: average vertex degree, graph
density, and maximum clique size. For instance, the maximum clique sizes found
by exact algorithms on such random graphs are in excellent agreement with sharp
estimates known from random graph theory derived by Matula and more rigorously
by Bollobas & Erdős.

Second, the bitstrings we obtained (from our pseudorandom number generator)
to generate the u(n) graphs were entirely unstructured as far as we could tell
while the bitstrings we obtained from the q-sampler revealed themselves to be
highly structured, even on casual visual inspection. It is reasonable to suspect that
the bitstrings derived from pseudorandom numbers would pass simple tests for
randomness; there is no doubt that the bitstrings from the q-sampler would not.

Finally, the graphs produced by pseudorandom generators are compressible.
However, in any polynomial size family of such graphs, almost surely only a tiny
fraction of those produced by the universal decompressor q(x) would arise. Said
in a more down-to-earth way: if one repeatedly samples from u(x), one repeatedly
gets graphs with the same structure (i.e., lack of it); in striking contrast, if one
repeatedly samples from q(x) one gets graphs with a wide variety of structures.
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Appendix: A Practical Guide to the q(x) Sampler

In this appendix we describe the q(x) sampler at a level appropriate for users who
might consider evaluating their algorithms on test data sampled from q(x). At the
end of this section, we also give instructions on how to fetch the software.

A macro-level description of the sampling procedure is as follows:

Algorithm q(x)-Sampler
1. Generate a random string s in f0; 1gm.
2. Decode s to give a pair (P; x), whereP is a program in the formalism explained

in Section 3 and x is a binary string.
3. Run program P on binary string x and output binary string y.

The string s is then a description of the string y.
In practice, the q(x)-Sampler is called repeatedly and only those strings ywhose

lengths exceed that of s by a certain threshold are kept, all others are thrown away.
This ensures that the remaining strings are compressible by a certain minimum
amount.

THE IMPLEMENTATION OF STEP 2

The algorithm to decode a string s into a pair (P; x) was designed to ensure that
almost every program that could be the target of some string s0 of length m had
nonzero probability to be the target of a random string s. The decoding procedure
is sketched below.
1. Interpret the first blogmc

2 bits of s as storing the length jxj of x.
2. Interpret the next jxj bits as storing x.

3. Let r denote the number of bits remaining at this point. Interpret the first blog rc
2

bits of these remaining r bits as storing the number of noniterated operators in
the program P .

4. Let o denote the number of operators found above. Interpret the next blog oc
2

bits as storing the number of iterated operators. These are obtained by placing
balanced parentheses around subsequences of non-iterated operators.

5. Interpret the next set of bits to indicate where the parentheses should be placed.
6. Interpret the next set of o � 3 bits as the actual codes of the non-iterated

operators. There are 8 such operators, so 3 bits suffice to identify individuals
amongst them.
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7. Interpret the next set of bits to give the length of every parameter to every
operator.

8. Interpret the remaining bits as the actual parameters for all the operators, using
the knowledge of the syntax of every operator and the knowledge of the length
of every parameter computed in the previous step.

AN EXAMPLE

This example was constructed from an actual run using the software discussed
later. The following command was invoked at the Unix command line.

rsb 1 30 10 | nlt_dec 30 | nlt 100

The program rsb generates a random string of length 30 using 10 as the seed.
The program nlt_dec decodes this string, taking the string length as a command-
line argument, and outputs the string x, followed by the program P. The operators
in P are identified by name and followed by their parameter strings. The operators
in P are sequenced under the assumption that P is to be executed from left to right,
with the first operator taking x as the input and producing an output string, which
becomes an input to the second operator and so on. The program nlt interprets P,
and executes it on the string x.

The actual strings and program produced in this example were:

s = 010010111100000010011011100100
x,P = 00 D 011 E 10 01 R0 0 0 .
y = 1010

The output y in this instance turned out to be shorter than s.

HOW TO FETCH THE q(x) SAMPLER

The q(x) sampler may be retrieved by anonymous ftp as follows:

ftp ftp.cs.buffalo.edu
Name: anonymous
> cd users/jagota
> get nlt.README
> quit

The file nlt.README provides further instructions.
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OTHER IMPORTANT USAGE DETAILS

The q(x) sampler can be used to generate compressible instances of any discrete
problem, whether on binary strings, or on structured objects such as graphs. One
needs to keep in mind the following issues however.
1. The good news is that the generation of compressible strings is quite efficient.

In our case, one of every six seed strings turned out to generate a highly
compressible string. To ensure this efficiency, however, the seed strings need
to be longer than a certain minimum length. We found that seed strings of
length less than 70 almost never generated compressible strings y, perhaps
because the programs P that result from such strings are too short and trivial
to generate compressible strings.

2. The bad news is that our implementation of nlt is quite inefficient because the
code that performs certain internal searches that need to be performed in order
to execute certain operators in P is not optimized.
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